Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 142(5): 800-9, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813265

RESUMEN

The evolution of the highest-order human brain center, the "pallium" or "cortex," remains enigmatic. To elucidate its origins, we set out to identify related brain parts in phylogenetically distant animals, to then unravel common aspects in cellular composition and molecular architecture. Here, we compare vertebrate pallium development to that of the mushroom bodies, sensory-associative brain centers, in an annelid. Using a newly developed protocol for cellular profiling by image registration (PrImR), we obtain a high-resolution gene expression map for the developing annelid brain. Comparison to the vertebrate pallium reveals that the annelid mushroom bodies develop from similar molecular coordinates within a conserved overall molecular brain topology and that their development involves conserved patterning mechanisms and produces conserved neuron types that existed already in the protostome-deuterostome ancestors. These data indicate deep homology of pallium and mushroom bodies and date back the origin of higher brain centers to prebilaterian times.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Cuerpos Pedunculados/fisiología , Poliquetos/fisiología , Vertebrados/genética , Animales , Tipificación del Cuerpo , Humanos , Poliquetos/anatomía & histología , Poliquetos/embriología , Poliquetos/genética , Vertebrados/anatomía & histología , Vertebrados/fisiología
2.
Development ; 141(2): 472-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24335257

RESUMEN

Observation of how cells divide, grow, migrate and form different parts of a developing organism is crucial for understanding developmental programs. Here, we describe a multicolor imaging tool named Raeppli (after the colorful confetti used at the carnival in Basel). Raeppli allows whole-tissue labeling such that the descendants of the majority of cells in a single organ are labeled and can be followed simultaneously relative to one another. We tested the use of Raeppli in the Drosophila melanogaster wing imaginal disc. Induction of Raeppli during larval stages irreversibly labels >90% of the cells with one of four spectrally separable, bright fluorescent proteins with low bias of selection. To understand the global growth characteristics of imaginal discs better, we induced Raeppli at various stages of development, imaged multiple fixed discs at the end of their larval development and estimated the size of their pouch primordium at those developmental stages. We also imaged the same wing disc through the larval cuticle at different stages of its development; the clones marked by Raeppli provide landmarks that can be correlated between multiple time points. Finally, we used Raeppli for continuous live imaging of prepupal eversion of the wing disc.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Linaje de la Célula , Color , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Discos Imaginales/citología , Discos Imaginales/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Recombinantes/genética , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo
3.
Philos Trans R Soc Lond B Biol Sci ; 363(1496): 1523-8, 2008 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-18192182

RESUMEN

It is yet unknown when and in what form the central nervous system in Bilateria first came into place and how it further evolved in the different bilaterian phyla. To find out, a series of recent molecular studies have compared neurodevelopment in slow-evolving deuterostome and protostome invertebrates, such as the enteropneust hemichordate Saccoglossus and the polychaete annelid Platynereis. These studies focus on the spatially different activation and, when accessible, function of genes that set up the molecular anatomy of the neuroectoderm and specify neuron types that emerge from distinct molecular coordinates. Complex similarities are detected, which reveal aspects of neurodevelopment that most likely occurred already in a similar manner in the last common ancestor of the bilaterians, Urbilateria. This way, different aspects of the molecular architecture of the urbilaterian nervous system are reconstructed and yield insight into the degree of centralization that was in place in the bilaterian ancestors.


Asunto(s)
Evolución Biológica , Sistema Nervioso Central/anatomía & histología , Animales , Tipificación del Cuerpo , Sistema Nervioso Central/crecimiento & desarrollo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Invertebrados/anatomía & histología , Invertebrados/clasificación , Invertebrados/genética , Invertebrados/crecimiento & desarrollo , Modelos Neurológicos , Vertebrados/anatomía & histología , Vertebrados/clasificación , Vertebrados/genética , Vertebrados/crecimiento & desarrollo
4.
Cell ; 129(2): 277-88, 2007 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-17448990

RESUMEN

To elucidate the evolutionary origin of nervous system centralization, we investigated the molecular architecture of the trunk nervous system in the annelid Platynereis dumerilii. Annelids belong to Bilateria, an evolutionary lineage of bilateral animals that also includes vertebrates and insects. Comparing nervous system development in annelids to that of other bilaterians could provide valuable information about the common ancestor of all Bilateria. We find that the Platynereis neuroectoderm is subdivided into longitudinal progenitor domains by partially overlapping expression regions of nk and pax genes. These domains match corresponding domains in the vertebrate neural tube and give rise to conserved neural cell types. As in vertebrates, neural patterning genes are sensitive to Bmp signaling. Our data indicate that this mediolateral architecture was present in the last common bilaterian ancestor and thus support a common origin of nervous system centralization in Bilateria.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Sistema Nervioso Central/embriología , Poliquetos/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción/genética , Vertebrados/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA