Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866052

RESUMEN

Increasing planting density is a key strategy for enhancing maize yields1-3. An ideotype for dense planting requires a 'smart canopy' with leaf angles at different canopy layers differentially optimized to maximize light interception and photosynthesis4-6, among other features. Here we identified leaf angle architecture of smart canopy 1 (lac1), a natural mutant with upright upper leaves, less erect middle leaves and relatively flat lower leaves. lac1 has improved photosynthetic capacity and attenuated responses to shade under dense planting. lac1 encodes a brassinosteroid C-22 hydroxylase that predominantly regulates upper leaf angle. Phytochrome A photoreceptors accumulate in shade and interact with the transcription factor RAVL1 to promote its degradation via the 26S proteasome, thereby inhibiting activation of lac1 by RAVL1 and decreasing brassinosteroid levels. This ultimately decreases upper leaf angle in dense fields. Large-scale field trials demonstrate that lac1 boosts maize yields under high planting densities. To quickly introduce lac1 into breeding germplasm, we transformed a haploid inducer and recovered homozygous lac1 edits from 20 diverse inbred lines. The tested doubled haploids uniformly acquired smart-canopy-like plant architecture. We provide an important target and an accelerated strategy for developing high-density-tolerant cultivars, with lac1 serving as a genetic chassis for further engineering of a smart canopy in maize.

2.
Plant Physiol Biochem ; 211: 108696, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705046

RESUMEN

Drought is a significant abiotic stressor that limits maize (Zea mays L.) growth and development. Thus, enhancing drought tolerance is critical for promoting maize production. Our findings demonstrated that ZmMYB39 is an MYB transcription factor with transcriptional activation activity. Drought stress experiments involving ZmMYB39 overexpression and knockout lines indicated that ZmMYB39 positively regulated drought stress tolerance in maize. DAP-Seq, EMSA, dual-LUC, and RT-qPCR provided initial insights into the molecular regulatory mechanisms by which ZmMYB39 enhances drought tolerance in maize. ZmMYB39 directly promoted the expression of ZmP5CS1, ZmPOX1, ZmSOD2, ZmRD22, ZmNAC49, and ZmDREB2A, which are involved in stress resistance. ZmMYB39 enhanced drought tolerance by interacting with and promoting the expression of ZmFNR1, ZmHSP20, and ZmDOF6. Our study offers a theoretical basis for understanding the molecular regulatory networks involved in maize drought stress response. Furthermore, ZmMYB39 serves as a valuable genetic resource for breeding drought-resistant maize.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Plantas Modificadas Genéticamente , Resistencia a la Sequía
3.
Front Neurol ; 14: 1156879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153682

RESUMEN

Ischemic stroke is by far the most common cerebrovascular disease and a major burden to the global economy and public health. Trimethylamine-N-oxide (TMAO), a small molecule compound produced by the metabolism of intestinal microorganisms, is reportedly associated with the risk of stroke, as well as the severity and prognosis of stroke; however, this conclusion remains contentious. This article reviews the production of TMAO, TMAO's relationship with different etiological types of ischemic stroke, and the possibility of reducing TMAO levels to improve the prognosis of ischemic stroke.

4.
Colloids Surf B Biointerfaces ; 65(2): 220-5, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18502620

RESUMEN

To probe into the potential of relieving the oxidative damage of salt stress, we investigated the protective role of nitric oxide on barley under salt stress. Salt stress resulted in increased ion leakage, lipid peroxidation and protein oxidation in barley leaves. Simultaneous treatments of barley leaves with 50 microM sodium nitroprusside, a nitric oxide donor, alleviated the damage of salt stress, reflected by decreased ion leakage, and malendialdehyde (MDA), carbonyl, and hydrogen peroxide content in barley leaves. The presence of the nitric oxide donor increased the activities of superoxide dismutases (SOD), ascorbate peroxidases (APX), and catalases (CAT). Meantime, sodium nitroprusside addition increased accumulation of ferritin at the protein level, indicating that nitric oxide directly regulated ferritin accumulation. These results suggested that nitric oxide can effectively protect seedlings from salt stress damage by enhancing activities of antioxidant enzymes to quench the excessive reactive oxygen species caused by salt stress and inducing the increase of ferritin accumulation to chelate larger number of ferrous ion. Information from this study can be used to improve soil management practices for sustainable use of salt-affected soils in the future.


Asunto(s)
Hordeum/fisiología , Óxido Nítrico/farmacología , Estrés Oxidativo/efectos de los fármacos , Cloruro de Sodio , Electroforesis en Gel de Poliacrilamida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA