Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8706-8715, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38487838

RESUMEN

Metal nanoclusters (MNCs) represent a promising class of materials for catalytic carbon dioxide and proton reduction as well as dihydrogen oxidation. In such reactions, multiple proton-coupled electron transfer (PCET) processes are typically involved, and the current understanding of PCET mechanisms in MNCs has primarily focused on the sequential transfer mode. However, a concerted transfer pathway, i.e., concerted electron-proton transfer (CEPT), despite its potential for a higher catalytic rate and lower reaction barrier, still lacks comprehensive elucidation. Herein, we introduce an experimental paradigm to test the feasibility of the CEPT process in MNCs, by employing Au18(SR)14 (SR denotes thiolate ligand), Au22(SR)18, and Au25(SR)18- as model clusters. Detailed investigations indicate that the photoinduced PCET reactions in the designed system proceed via an CEPT pathway. Furthermore, the rate constants of gold nanoclusters (AuNCs) have been found to be correlated with both the size of the cluster and the flexibility of the Au-S framework. This newly identified PCET behavior in AuNCs is prominently different from that observed in semiconductor quantum dots and plasmonic metal nanoparticles. Our findings are of crucial importance for unveiling the catalytic mechanisms of quantum-confined metal nanomaterials and for the future rational design of more efficient catalysts.

2.
Anal Bioanal Chem ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358531

RESUMEN

α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.

3.
J Biochem Mol Toxicol ; 37(12): e23503, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37706594

RESUMEN

Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus (DM) and is the most prevalent chronic kidney disease (CKD). Poricoic acid A (PAA), a component isolated from Traditional Chinese Medicine (TCM) Poria cocos, has hypoglycaemic and anti-fibrosis effects. However, the role of PAA in DKD remains largely unclear. To mimics an in vitro model of DKD, the mouse podocyte MPC5 cells were treated with high glucose (25 mM; HG) for 24 h. CCK-8 and flow cytometry assays were conducted for assessing MPC5 cell viability and apoptosis. Meanwhile, streptozotocin (STZ) was used to induce experimental DKD in mice by intraperitoneal injection. PAA notably inhibited the apoptosis and inflammation, reduced the generation of ROS, and elevated the MMP level in HG-treated MPC5 cells. Moreover, PAA obviously reduced blood glucose and urine protein levels, inhibited renal fibrosis in DKD mice. Meanwhile, PAA markedly increased LC3 and ATG5 levels and declined p62 and FUNDC1 levels in HG-treated MPC5 cells and in the kidney tissues of DKD mice, leading to the activation of cell mitophagy. Furthermore, the downregulation of FUNDC1 also inhibited apoptosis, inflammation, and promoted mitophagy in HG-treated MPC5 cells. As expected, the knockdown of FUNDC1 further enhanced the protective role of PAA in MPC5 cells following HG treatment, indicating that induction of mitophagy could attenuate podocyte injury. Collectively, PAA could exert beneficial effects on podocyte injury in DKD by promoting mitophagy via downregulating FUNDC1. These findings suggested that PAA may have great potential in alleviating kidney injury in DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Podocitos/metabolismo , Mitofagia , Inflamación/metabolismo , Diabetes Mellitus/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
4.
Anal Chem ; 94(4): 2341-2347, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35049295

RESUMEN

Seeking for an advanced electrochemiluminescence (ECL) platform is still an active and continuous theme in the ECL-sensing realm. This work outlines a femtomolar-level and highly selective glutathione (GSH) and adenosine triphosphate (ATP) ECL assay strategy using a facile split-type gold nanocluster (AuNC) probe-based ECL platform. The system utilizes GSH as an efficient etching agent to turn on the MnO2/AuNC-based ECL nanoswitch platform. This method successfully achieves an ultrasensitive detection of GSH, which significantly outperformed other sensors. Based on the above excellent results, GSH-related biological assays have been further established by taking ATP as a model. Combined with the high catalytic oxidation ability of DNAzyme, this ECL sensor can realize ATP assay as low as 1.4 fmol without other complicated exonuclease amplification strategies. Thus, we successfully achieved an ultrahigh sensitivity, extremely wide dynamic range, great simplicity, and strong anti-interference detection of ATP. In addition, the actual sample detection for GSH and ATP exhibits satisfactory results. We believe that our proposed high-performance platform will provide more possibilities for the detection of other GSH-related substances and show great prospect in disease diagnosis and biochemical research.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas/métodos , Glutatión , Oro/química , Límite de Detección , Mediciones Luminiscentes/métodos , Compuestos de Manganeso , Nanopartículas del Metal/química , Óxidos/química
5.
Anal Chem ; 94(26): 9287-9296, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723526

RESUMEN

Vitamin B6 derivatives (VB6Ds) are of great importance for all living organisms to complete their physiological processes. However, their excess in the body can cause serious problems. What is more, the qualitative and quantitative analysis of different VB6Ds may present significant challenges due to the high similarity of their chemical structures. Also, the transfer of deep learning model from one task to a similar task needs to be present more in the fluorescence-based biosensor. Therefore, to address these problems, two deep learning models based on the intrinsic fingerprint of 3D fluorescence spectra have been developed to identify five VB6Ds. The accuracy ranges of a deep neural network (DNN) and a convolutional neural network (CNN) were 94.44-97.77% and 97.77-100%, respectively. After that, the developed models were transferred for quantitative analysis of the selected VB6Ds at a broad concentration range (1-100 µM). The determination coefficient (R2) values of the test set for DNN and CNN were 93.28 and 97.01%, respectively, which also represents the outperformance of CNN over DNN. Therefore, our approach opens new avenues for qualitative and quantitative sensing of small molecules, which will enrich fields related to deep learning, analytical chemistry, and especially sensor array chemistry.


Asunto(s)
Aprendizaje Profundo , Fluorescencia , Oro , Vitamina B 6 , Vitaminas
6.
Anal Chem ; 94(50): 17533-17540, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36473730

RESUMEN

Rapid and on-site qualitative and quantitative analysis of small molecules (including bioflavonoids) in biofluids are of great importance in biomedical applications. Herein, we have developed two deep learning models based on the 3D fluorescence spectra of gold nanoclusters as a single probe for rapid qualitative and quantitative analysis of eight bioflavonoids in serum. The results proved the efficiency and stability of the random forest-bidirectional long short-term memory (RF-BLSTM) model, which was used only with the most important features after deleting the unimportant features that might hinder the performance of the model in identifying the selected bioflavonoids in serum at very low concentrations. The optimized model achieves excellent overall accuracy (98-100%) in the qualitative analysis of the selected bioflavonoids. Next, the optimized model was transferred to quantify the selected bioflavonoids in serum at nanoscale concentrations. The transferred model achieved excellent accuracy, and the overall determination coefficient (R2) value range was 99-100%. Furthermore, the optimized model achieved excellent accuracies in other applications, including multiplex detection in serum and model applicability in urine. Also, LOD in serum at nanoscale concentration was considered. Therefore, this approach opens the window for qualitative and quantitative analysis of small molecules in biofluids at nanoscale concentrations, which may help in the rapid inclusion of sensor arrays in biomedical and other applications.


Asunto(s)
Líquidos Corporales , Nanopartículas del Metal , Oro , Flavonoides , Espectrometría de Fluorescencia/métodos
7.
Anal Chem ; 94(36): 12500-12506, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36044018

RESUMEN

Screening high-performance anodic electrochemiluminescence (ECL) systems with low triggering potential is a promising way to broaden their applications. In addition to electrochemiluminophore, co-reactant also plays an important role in the ECL process, since the oxidation of co-reactants is one of the most important steps in the anodic ECL process. Herein, a novel co-reactant-mediated high-performance low-potential Au nanocluster (AuNC)-based ECL system has been successfully developed. Benefiting from the isopropyl substitution and hydroxyl addition to the triethylamine (TEA), the BSA-AuNC/2-(diisopropylamino)ethanol (DIPEA-OH) ECL system achieved higher energy efficiency at a lower potential of 0.75 V. In addition, compared with the BSA-AuNC/TEA system, the ECL intensity and quantum yield (ΦECL) with DIPEA-OH as a co-reactant increased 22.34-fold and 13-fold (as high as 68.17%), respectively. Based on the low potential, high ΦECL of the AuNC/DIPEA-OH ECL system, a sandwich-type immunosensor has been constructed for a highly selective SARS-CoV-2 N protein assay. In the absence of any complex signal amplification strategies, the ECL immunosensor for the SARS-CoV-2 N protein detection showed a linear range of 0.001-100 ng/mL and a detection limit of 0.35 pg/mL. Moreover, the ECL platform had good reproducibility and stability and exhibited acceptable detection performance in the detection of actual serum samples. This work established a framework for in-depth design and study of anode ECL co-reactants for AuNCs and other luminophores, and expanded the potential application of ECL sensors in the clinical diagnosis of COVID-19.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , COVID-19/diagnóstico , Técnicas Electroquímicas , Electrodos , Humanos , Inmunoensayo , Límite de Detección , Mediciones Luminiscentes , Reproducibilidad de los Resultados , SARS-CoV-2
8.
Anal Bioanal Chem ; 414(17): 4877-4884, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35576012

RESUMEN

As a kind of sensing and imaging fluorescent probe with the merit of low toxicity, good stability, and environment-friendly, silicon nanoparticles (SiNPs) are currently attracting extensive research. In this work, we obtained mitoxantrone-SiNPs (MXT-SiNPs) with green emission by one-pot synthesis under mild temperature condition. The antenna based on pyridoxal phosphate (PLP) was designed for light-harvesting to enhance the luminescence of MXT-SiNPs and to establish a novel sensing strategy for alkaline phosphatase (ALP). PLP transfers the absorbed photon energy to MXT-SiNPs by forming Schiff base. When PLP is dephosphorized by ALP, the released free hydroxyl group reacts with aldehyde group to form internal hemiacetal, which leads to the failure of Schiff base formation. Based on the relationship between antenna formation ability and PLP hydrolysis degree, the activity of ALP can be measured. A good linear relationship was obtained from 0.2 to 3.0 U/L, with a limit of detection of 0.06 U/L. Furthermore, the sensing platform was successfully used to detect ALP in human serum with recovery of 97.6-106.2%. The rational design of antenna elements for fluorescent nanomaterials can not only provide a new pathway to manipulate the luminescence, but also provide a new direction for fluorescence sensing strategy.


Asunto(s)
Fosfatasa Alcalina , Nanopartículas , Humanos , Mitoxantrona , Fosfato de Piridoxal , Bases de Schiff , Silicio
9.
Anal Bioanal Chem ; 414(29-30): 8365-8378, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36280626

RESUMEN

Different acquisition data approaches have been used to fetch the fluorescence spectra. However, the comparison between them is rare. Also, the extendability of a sensor array, which can work with heavy metal ions and other types of analytes, is scarce. In this study, we used first- and second-order fluorescent data generated by 6-Aza-2-thiothymine-gold nanocluster (ATT-AuNCs) as a single probe along with machine learning to distinguish between a group of heavy metal ions. Moreover, the dimensionality reduction was carried out for the different acquisition data approaches. In our case, the accuracy of different machine learning algorithms using first-order data outperforms the second-order data before and after the dimensionality reduction. For proving the extendibility of this approach, four anions were used as an example. As expected, the same finding has been found. Furthermore, random forest (RF) showed more stable and accurate results than other models. Also, linear discriminant analysis (LDA) gave acceptable accuracy in the analysis of the high-dimensionality data. Accordingly, using LDA in high-dimensionality data (the first- and second-order data) analysis was highlighted for discrimination between the selected heavy metal ions in different concentrations and in different molar ratios, as well as in real samples. Also, the same method was applied for the anion's discrimination, and LDA gave an excellent separation ability. Moreover, LDA was able to differentiate between all the selected analytes with excellent separation ability. Additionally, the quantitative detection was considered using a wide concentration range of Cd2+, and the LOD was 60.40 nM. Therefore, we believe that our approach opens new avenues for linking analytical chemistry, especially sensor array chemistry, with machine learning.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Oro , Metales Pesados/análisis , Espectrometría de Fluorescencia/métodos , Iones , Aprendizaje Automático
10.
Mikrochim Acta ; 189(4): 160, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35347452

RESUMEN

Sensitive and rapid detection of pathogenic bacteria plays an important role in avoiding food poisoning. However, the practical application value of conventional assays for detection of foodborne bacteria, are limited by major drawbacks; these include the laboriousness of pure culture preparation, complexity of DNA extraction for polymerase chain reaction, and low sensitivity of enzyme-linked immunosorbent assay. Herein, we designed a non-complex strategy for the sensitive, quantitative, and rapid detection of Salmonella typhimurium with high specificity, using an anti-Salmonella typhimurium IgG-AuNC-based immunofluorescent-aggregation assay. Salmonella typhimurium was agglutinated with fluorescent anti-Salmonella typhimurium IgG-AuNC on a glass slide, and observed using a fluorescence microscope with photoexcitation and photoemission at 560 nm and 620 nm, respectively. Under optimized reaction conditions, the AuNC-based immunofluorescent-aggregation assay had a determination range between 7.0 × 103 and 3.0 × 108 CFU/mL, a limit of detection of 1.0 × 103 CFU/mL and an assay response time of 3 min. The technique delivered good results in assessing real samples.


Asunto(s)
Anticuerpos Antibacterianos , Salmonella typhimurium , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Reacción en Cadena de la Polimerasa
11.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36430900

RESUMEN

An acute lung injury (ALI) is a serious lung disease with a high mortality rate, warranting the development of novel therapies. Previously, we reported that 1,2,3,4,6-O-pentagalloylglucose (PGG) could afford protection against ALI, however, the PGG-mediated protective effects remain elusive. Herein, PGG (60 and 30 mg/kg) markedly inhibited the lung wet/drug weight ratio and attenuated histological changes in the lungs (p < 0.05). A pretreatment with PGG (60 and 30 mg/kg) reduced the number of total leukocytes and the production of pro-inflammatory cytokines IL-6 and IL-1ß in bronchoalveolar lavage fluid (p < 0.05). In addition, PGG (60 and 30 mg/kg) also attenuated oxidative stress by reducing the formation of formation and the depletion of superoxide dismutase to treat an ALI (p < 0.05). To further explore the PGG-induced mechanism against an ALI, we screened the PGG pathway using immunohistochemical analysis, immunofluorescence assays, and Western blotting (WB). WB revealed that the expression levels of adenosine monophosphate-activated protein kinase phosphorylation (p-AMPK), phosphoinositide 3-kinase (PI3K), protein kinase B phosphorylation (P-Akt), and nuclear factor erythroid 2-related factor (Nrf2) were significantly higher in the PGG group (60 and 30 mg/kg) than in the lipopolysaccharide group (p < 0.05); these findings were confirmed by the immunohistochemical and immunofluorescence results. Accordingly, PGG could be effective against an ALI by inhibiting inflammation and oxidative stress via AMPK/PI3K/Akt/Nrf2 signaling, allowing for the potential development of this as a natural drug against an ALI.


Asunto(s)
Lesión Pulmonar Aguda , Factor 2 Relacionado con NF-E2 , Humanos , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/inducido químicamente , Proteínas Quinasas Activadas por AMP , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Anal Chem ; 93(38): 13022-13028, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34523333

RESUMEN

Biomolecule-functionalized Au nanoclusters (AuNCs) have drawn great interest in the electrochemiluminescence (ECL) field due to their unique optical/electrical properties, biocompatibility, and versatile bioapplication potentials. Herein, we proposed a two-in-one ECL probe of immunoglobulin G-encapsulated AuNCs (IgG-AuNCs) for the development of a high-performance ECL immunoassay (ECLIA) platform. The IgG-AuNCs were not only used as an ECL probe due to their excellent anodic ECL performance with triethylamine (TEA) as a coreactant but also used as the biorecognition element because of their well-retained bioactivity of the IgG. As a proof of concept, a new type of competitive immunosensing platform has been applied to detect IgG representing several merits of facile preparation, rapid detection, sample saving, and good analytical performance. The sensing platform exhibited a linear range of 0.5-50,000 ng/mL with a limit of detection of 0.06 ng/mL for IgG detection with high selectivity. In addition, this convenient ECLIA platform also performed well in real serum sample detection. Notably, our work not only proved the "two-in-one" immuno-AuNC probe-based ECLIA strategy but also developed a rational framework for study of ECL bioassay platforms based on multifunctional AuNCs and other related nanomaterials.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas , Electrodos , Oro , Inmunoensayo , Inmunoglobulina G , Límite de Detección , Mediciones Luminiscentes
13.
Anal Chem ; 93(10): 4635-4640, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33661613

RESUMEN

Monitoring of kanamycin residue has attracted considerable attention owing to the potential harm caused by the abuse of kanamycin. However, the detection of kanamycin has been limited owing to its electrochemical and optical inertness. Herein, we report a facile and highly efficient electrochemiluminescence (ECL) strategy for the detection of kanamycin based on the valence state effect of gold nanocluster (AuNC) probes. It is proven that Au0 in chemically reduced AuNCs (CR-AuNCs) could be oxidized to AuI via the redox reaction between kanamycin and CR-AuNCs in the presence of H2O2, resulting in ECL quenching due to the valence state change of CR-AuNCs. Because the ECL of the AuNC probes is sensitively affected by the valence state, excellent sensitivity for kanamycin was achieved without any signal amplification operation and aptamers. A preferable linear-dependent curve was acquired in the detection range from 1.0 × 10-11 to 3.3 × 10-5 M with an extremely low detection limit of 1.5 × 10-12 M. The proposed kanamycin sensing platform is very simple and shows high selectivity and an extremely broad linear range detection of kanamycin. Furthermore, the proposed sensing platform can detect kanamycin in milk samples with excellent recoveries. Therefore, this sensing strategy provides an effective and facile way to detect kanamycin and can help promote the understanding of the constructed mechanism of the AuNC-based ECL system, thus greatly broadening its potential application in ECL fields.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas , Oro , Peróxido de Hidrógeno , Kanamicina , Límite de Detección , Mediciones Luminiscentes
14.
Small ; 17(38): e2102149, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34423524

RESUMEN

Design of high-performance all-inorganic halide perovskites, especially lead-free perovskites, is key to the broadening of its application prospects. Herein, the authors report the synthesis of ligand-free cesium platinum (IV) bromide nanocrystals (Cs2 PtBr6 NCs), a new kind of vacancy-ordered lead-free perovskite nanomaterial, by a facile one-pot method. The Cs2 PtBr6 NCs exhibits a narrow band gap of 1.32 eV covering the entire visible range, which is supported by density functional theory calculations. Together with their high conductivity, matching energy levels with the work function of carbon electrodes, and excellent environmental stability, this NC displays a cathodic photocurrent density as high as 335 µA cm-2 , two orders of magnitude higher than other perovskites in aqueous solutions without the need of other electron acceptors. These combined properties suggest that the Cs2 PtBr6 NCs have great potentials in a wide range of photoelectronic and photoelectrochemical sensing applications.


Asunto(s)
Compuestos de Calcio , Nanopartículas , Óxidos , Titanio
15.
Langmuir ; 37(2): 949-956, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33405936

RESUMEN

The use of metal ions to bridge the fluorescent materials to target analytes has been demonstrated to be a promising way to sensor design. Herein, the effect of rare-earth ions on the fluorescence of l-methionine-stabilized gold nanoclusters (Met-AuNCs) was investigated. It was found that europium (Eu3+) can significantly suppress the emission of Met-AuNCs, while other rare-earth ions showed a negligible impact. The mechanism on the observed fluorescence quenching of Met-AuNCs triggered by Eu3+ was systematically explored, with results revealing the dominant role of photoinduced electron transfer (PET). Eu3+ can bind to the surface of Met-AuNCs by the coordination effect and accepts the electron from the excited Met-AuNCs, which results in Met-AuNC fluorescence suppression. After introducing dipicolinic acid (DPA), an excellent biomarker for spore-forming pathogens, Eu3+ was removed from the surface of Met-AuNCs owing to the higher binding affinity between Eu3+ and DPA. Consequently, an immediate fluorescence recovery occurred when DPA was present in the system. Based on the Met-AuNC/Eu3+ ensemble, we then established a simple and sensitive fluorescence strategy for turn-on determination of biomarker DPA, with a linear range of 0.2-4 µM and a low limit of detection of 110 nM. The feasibility of the proposed method was further validated by the quantitative detection of DPA in the soil samples. We believe that this study would significantly facilitate the construction of metal-ion-mediated PET sensors for the measurement of various interested analytes by applying fluorescent AuNCs as detection probes.

16.
Analyst ; 147(1): 101-108, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34846387

RESUMEN

Heavy metal ions (HMIs), including Cu2+, Ag+, Cd2+, Hg2+, and Pb2+ from the environment pose a threat to human beings and can cause a series of life-threatening diseases. Therefore, colorimetric sensors with convenience and flexibility for HMI discrimination are still required. To provide a solution, a peroxidase-like activity-based colorimetric sensor array of citrate-capped noble metal nanozymes (osmium, platinum, and gold) has been fabricated. Some studies reported that some HMIs could interact with the noble metal nanozymes leading to a change in their peroxidase-like activity. This phenomenon was confirmed in our work. Based on this principle, different concentrations of HMIs (Cu2+, Ag+, Cd2+, Hg2+, and Pb2+) were discriminated. Moreover, their practical application has been tested by discriminating HMIs in tap water and SiYu lake water. What is more, as an example of the validity of our method to quantify HMIs at nanomolar concentrations, the LOD of Hg2+ was presented. To sum up, our study not only demonstrates the differentiation ability of this nanozyme sensor array but also gives hints for using nanozyme sensor arrays for further applications.


Asunto(s)
Colorimetría , Metales Pesados , Humanos , Iones , Metales Pesados/toxicidad , Peroxidasas
17.
Anal Chem ; 92(16): 11438-11443, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32691587

RESUMEN

Monitoring nicotine concentrations in human fluids is extremely crucial owing to the harmful effect of nicotine on human health. Herein, it is shown that nicotine could quench the cathodic electrochemiluminescence (ECL) of gold nanoclusters (AuNCs) with high efficiency. The ECL quenching mechanism of nicotine was studied in detail using various experimental tools and theoretical calculations. It was concluded that the strongly oxidizing intermediate SO4•-, produced from K2S2O8, could oxidized nicotine, resulting in ECL emission quenching. On the basis of this high-efficiency ECL quenching of the AuNCs/K2S2O8 system, a recyclable, ultrasensitive, and selective ECL sensing platform for nicotine detection was proposed. Even in the absence of any complex signal amplification techniques, the ECL sensor for nicotine detection showed an unprecedentedly low detection limit of 7.0 × 10-13 M (S/N = 3) and a wide linear range over 8 orders of magnitude. Most remarkably, it could be successfully used for nicotine detection in human urine samples. This is expected to promote the investigations and applications on nicotine-related diseases. We believe that the proposed ECL platform can hold great prospects for commercialization in biomedical fields and tobacco industries.


Asunto(s)
Técnicas Electroquímicas/métodos , Sustancias Luminiscentes/química , Mediciones Luminiscentes/métodos , Nanopartículas del Metal/química , Nicotina/orina , Oro/química , Humanos , Límite de Detección , Luminiscencia , Nicotina/química , No Fumadores , Oxidación-Reducción , Compuestos de Potasio/química , Fumadores , Sulfatos/química
18.
Anal Chem ; 92(1): 1635-1642, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31834785

RESUMEN

A visual assay for the detection of heparinase was developed on the basis of a ternary system of Hg2+-heparin-osmium nanoparticles (OsNPs). First, heparin-capped OsNPs (heparin-OsNPs) were synthesized by a facile reduction method using heparin as the protecting/stabilizing agent. The oxidase-like activity of heparin-OsNPs, however, turned out to be low, which somewhat limits their application. We discovered that Hg2+ can significantly/specifically boost the oxidase-like activity of heparin-OsNPs via electrostatic interaction. The oxidase-like activity of heparin-OsNPs toward the oxidation of the substrate, 3,3',5,5'-tetramethylbenzidine, by dissolved O2 was found to increase by 76-fold in the presence of Hg2+. More significantly, heparin in heparin-OsNPs could be specifically hydrolyzed into small fragments in the presence of heparinase, which resulted in the weakening of the oxidase-like activity of Hg2+/heparin-OsNPs. On the basis of these findings, a linear response of the sensor for heparinase was obtained in the range 20-1000 µg/L with a low detection limit (15 µg/L), which is comparable to those of other reported sensors. Further, the colorimetric sensor was employed for the detection of heparinase in human serum samples with satisfactory results. We speculate that combining such surface modification of the osmium nanozyme with a sensing element could be an interesting direction for promoting nanozyme research in medical diagnosis.


Asunto(s)
Liasa de Heparina/análisis , Heparina/química , Mercurio/química , Nanopartículas del Metal/química , Osmio/química , Técnicas Biosensibles , Liasa de Heparina/metabolismo , Humanos , Estructura Molecular
19.
Anal Chem ; 92(2): 2019-2026, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31854983

RESUMEN

Donor-linker-acceptor (D-L-A)-based photoinduced electron transfer (PET) has been frequently used for the construction of versatile fluorescent chemo/biosensors. However, sophisticated and tedious processes are generally required for the synthesis of these probes, which leads to poor design flexibility. In this work, by exploiting a Schiff base as a linker unit, a covalently bound D-L-A system was established and subsequently utilized for the development of a PET sensor. Cysteamine (Cys) and N-acetyl-l-cysteine (NAC) costabilized gold nanoclusters (Cys/NAC-AuNCs) were synthesized and adopted as an electron acceptor, and pyridoxal phosphate (PLP) was selected as an electron donor. PLP can form a Schiff base (an aldimine) with the primary amino group of Cys/NAC-AuNC through its aldehyde group and thereby suppresses the fluorescence of Cys/NAC-AuNC. The Rehm-Weller formula results and a HOMO-LUMO orbital study revealed that a reductive PET mechanism is responsible for the observed fluorescence quenching. Since the pyridoxal (PL) produced by the acid phosphatase (ACP)-catalyzed cleavage of PLP has a weak interaction with Cys/NAC-AuNC, a novel turn-on fluorescent method for selective detection of ACP was successfully realized. To the best of our knowledge, this is the first example of the development of a covalently bound D-L-A system for fluorescent PET sensing of enzyme activity based on AuNC nanoprobes using a Schiff base.


Asunto(s)
Acetilcisteína/metabolismo , Cisteamina/metabolismo , Oro/metabolismo , Nanopartículas del Metal/química , Fosfato de Piridoxal/metabolismo , Acetilcisteína/química , Cisteamina/química , Teoría Funcional de la Densidad , Transporte de Electrón , Oro/química , Tamaño de la Partícula , Procesos Fotoquímicos , Fosfato de Piridoxal/química , Bases de Schiff/química , Bases de Schiff/metabolismo , Propiedades de Superficie
20.
Chembiochem ; 21(7): 978-984, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31657085

RESUMEN

Although oxidase mimetic nanozymes have been widely investigated, specific biological molecules have rarely been explored as substrates, particularly in the case of ascorbate oxidase (AAO) mimetic nanozymes. Herein, we demonstrate for the first time that copper(II) oxide nanoparticles (CuO NPs) catalyze the oxidation of ascorbic acid (AA) by dissolved O2 (as a green oxidant) to form dehydroascorbic acid (DHAA), thus functioning as a new kind of AAO mimic. Under neutral conditions, the Michaelis-Menten constant of CuO NPs (0.1302 mm) is similar to that of AAO (0.0840 mm). Furthermore, the robustness of CuO NPs is greater than that of AAO, thus making them suitable for applications under various conditions. As a demonstration, a fluorescence AA sensor based on the AAO mimetic activity of CuO NPs was developed. To obtain a fluorescent product, o-phenylenediamine (OPDA) was used to react with the DHAA produced by the oxidation of AA catalyzed by CuO NPs. The developed sensor was cost-effective and easy to fabricate and exhibited high selectivity/sensitivity with a wide linear range (1.25×10-6 to 1.125×10-4 m) and a low detection limit (3.2×10-8 m). The results are expected to aid in expanding the applicability of oxidase mimetic nanozymes in a variety of fields such as biology, medicine, and detection science.


Asunto(s)
Materiales Biomiméticos/metabolismo , Cobre/química , Nanopartículas del Metal/química , Ascorbato Oxidasa/química , Ascorbato Oxidasa/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Materiales Biomiméticos/química , Catálisis , Cinética , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA