Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nucleic Acids Res ; 52(19): 11612-11625, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39329259

RESUMEN

Multiple testis-specific histone variants are involved in the dynamic chromatin transitions during spermatogenesis. H2B.W1 (previously called H2BFWT) is an H2B variant specific to primate testis with hitherto unclear functions, although its single-nucleotide polymorphisms (SNPs) are closely associated with male non-obstructive infertility. Here, we found that H2B.W1 is only expressed in the mid-late spermatogonia stages, and H2B.W1 nucleosomes are defined by a more flexible structure originating from weakened interactions between histones and DNA. Furthermore, one of its SNPs, H2B.W1-H100R, which is associated with infertility, further destabilizes the nucleosomes and increases the nucleosome unwrapping rate by interfering with the R100 and H4 K91/R92 interaction. Our results suggest that destabilizing H2B.W1 containing nucleosomes might change the chromatin structure of spermatogonia, and that H2B.W1-H100R enhances the nucleosome-destabilizing effects, leading to infertility.


Asunto(s)
ADN , Histonas , Nucleosomas , Polimorfismo de Nucleótido Simple , Testículo , Nucleosomas/metabolismo , Nucleosomas/genética , Masculino , Histonas/metabolismo , Histonas/genética , Animales , Testículo/metabolismo , ADN/metabolismo , ADN/genética , ADN/química , Espermatogonias/metabolismo , Humanos , Espermatogénesis/genética , Ratones , Cromatina/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo
2.
Opt Lett ; 49(2): 234-237, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194536

RESUMEN

Photoacoustic imaging is a powerful technique for obtaining high-resolution images of vascular distribution and physiological information about blood by utilizing the light absorption coefficient as an imaging contrast. However, visualizing weakly light-absorbing components without specific contrast agents or multi-wavelength techniques presents a challenge due to significant differences in light absorption between these components and blood. In this study, we propose a novel method that leverages the thermal effect of ultrasound to induce temperature differences and enhance the contrast of photoacoustic imaging. We conducted phantom experiments to verify the feasibility of our method. Our method effectively highlighted weakly light-absorbing components with strong acoustic absorption, even in the presence of highly light-absorbing components such as blood or melanin. Furthermore, it enabled the differentiation of components with similar light absorption but different acoustic absorption.


Asunto(s)
Acústica , Tomografía Computarizada por Rayos X , Ultrasonografía , Fantasmas de Imagen , Melaninas
3.
Development ; 146(18)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31455604

RESUMEN

Organ formation relies on the orchestration of pattern formation, proliferation and growth during development. How these processes are integrated at the individual cell level remains unclear. In the past decades, studies using Drosophila wing imaginal discs as a model system have provided valuable insights into pattern formation, growth control and regeneration. Here, we provide single cell transcriptomic landscapes of pattern formation, proliferation and growth of wing imaginal discs. We found that patterning information is robustly maintained in the single cell transcriptomic data and can provide reference matrices for computationally mapping single cells into discrete spatial domains. Assignment of wing disc single cells to spatial subregions facilitates examination of patterning refinement processes. We also clustered single cells into different proliferation and growth states and evaluated the correlation between cell proliferation/growth states and spatial patterning. Furthermore, single cell transcriptomic analyses allowed us to quantitatively examine disturbances of differentiation, proliferation and growth in a well-established tumor model. We provide a database to explore these datasets at http://drosophilayanlab-virtual-wingdisc.ust.hk:3838/v2/This article has an associated 'The people behind the papers' interview.


Asunto(s)
Tipificación del Cuerpo/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Discos Imaginales/citología , Discos Imaginales/crecimiento & desarrollo , Análisis de la Célula Individual , Transcriptoma/genética , Alas de Animales/crecimiento & desarrollo , Animales , Diferenciación Celular , Proliferación Celular/genética , Mutación/genética
4.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34577234

RESUMEN

Metals which are widely used in many types of industries are usually subjected to fatigue and surface corrosion. There is a demand to detect the surface damage caused by fatigue and corrosion at an early stage to ensure the structural integrity. In this paper, a novel nonlinear ultrasonic technique based on the measure of third-order combined harmonic generation, is proposed to detect and locate the surface damage in 6061 aluminum alloy. Third-order combined harmonic generation caused by non-collinear mixing of one longitudinal wave and one transverse wave at different frequencies, is firstly analyzed and experimentally observed. An experimental procedure of nonlinear scanning is proposed for the damage detection and location by checking the variation of frequency nonlinear response. The correlations of nonlinear frequency mixing responses and surface damage in the specimens are obtained. Results show that the nonlinear response caused by fatigue damage and surface corrosion can be identified and located by this method. In addition, this approach can exclude the nonlinearity induced by the instruments and simplify the signal processing.

5.
Sensors (Basel) ; 21(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804180

RESUMEN

This study experimentally and numerically investigated the nonlinear behavior of the resonant bulk waves generated by the two-way collinear mixing method in 5052 aluminum alloy with micro-crack damage. When the primary longitudinal and transverse waves mixed in the micro-crack damage region, numerical and experimental results both verified the generation of resonant waves if the resonant condition ωL/ωT=2κ/(κ-1) was satisfied. Meanwhile, we found that the acoustic nonlinearity parameter (ANP) increases monotonously with increases in micro-crack density, the size of the micro-crack region, the frequency of resonant waves and friction coefficient of micro-crack surfaces. Furthermore, the micro-crack damage in a specimen generated by low-temperature fatigue experiment was employed. It was found that the micro-crack damage region can be located by scanning the specimen based on the two-way collinear mixing method.

6.
Sensors (Basel) ; 20(12)2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32575824

RESUMEN

Lamb wave-based structural health monitoring techniques have the ability to scan a large area with relatively few sensors. Lamb wave imaging is a signal processing strategy that generates an image for locating scatterers according to the received Lamb waves. This paper presents a Lamb wave imaging method, which is formulated as a weighted structured sparse reconstruction problem. A dictionary is constructed by an analytical Lamb wave scattering model and an edge reflection prediction technique, which is used to decompose the experimental scattering signals under the constraint of weighted structured sparsity. The weights are generated from the correlation coefficients between the scattering signals and the predicted ones. Simulation and experimental results from an aluminum plate verify the effectiveness of the present method, which can generate images with sparse pixel values even with very limited number of sensors.

7.
Sensors (Basel) ; 18(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060573

RESUMEN

The symmetric zero-frequency mode induced by weak material nonlinearity during Lamb wave propagation is explored for the first time. We theoretically confirm that, unlike the second harmonic, phase-velocity matching is not required to generate the zero-frequency mode and its signal is stronger than those of the nonlinear harmonics conventionally used, for example, the second harmonic. Experimental and numerical verifications of this theoretical analysis are conducted for the primary S0 mode wave propagating in an aluminum plate. The existence of a symmetric zero-frequency mode is of great significance, probably triggering a revolutionary progress in the field of non-destructive evaluation and structural health monitoring of the early-stage material nonlinearity based on the ultrasonic Lamb waves.

8.
Opt Express ; 23(21): 26969-77, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26480358

RESUMEN

Photoacoustic tomography is a promising and rapidly developed methodology of biomedical imaging. It confronts an increasing urgent problem to reconstruct the image from weak and noisy photoacoustic signals, owing to its high benefit in extending the imaging depth and decreasing the dose of laser exposure. Based on the time-domain characteristics of photoacoustic signals, a pulse decomposition algorithm is proposed to reconstruct a photoacoustic image from signals with low signal-to-noise ratio. In this method, a photoacoustic signal is decomposed as the weighted summation of a set of pulses in the time-domain. Images are reconstructed from the weight factors, which are directly related to the optical absorption coefficient. Both simulation and experiment are conducted to test the performance of the method. Numerical simulations show that when the signal-to-noise ratio is -4 dB, the proposed method decreases the reconstruction error to about 17%, in comparison with the conventional back-projection method. Moreover, it can produce acceptable images even when the signal-to-noise ratio is decreased to -10 dB. Experiments show that, when the laser influence level is low, the proposed method achieves a relatively clean image of a hair phantom with some well preserved pattern details. The proposed method demonstrates imaging potential of photoacoustic tomography in expanding applications.

9.
Ultrasonics ; 143: 107413, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096621

RESUMEN

In this paper, we present an experimental observation of the phenomenon known as zero-group velocity (ZGV) combined harmonic generation, which is induced by the mixing of counter-directional Lamb waves. We utilize internal resonant conditions to selectively choose the primary mode pair at specific frequencies for the purpose of combined harmonic generation. To detect the ZGV combined harmonic component, we propose a hybrid system that incorporates dual wedge-transducers for generation and a laser interferometric system for receiving. The appearance of the predicted S1-ZGV combined harmonic at a specific mixing frequency is clearly observed in our experiments. Furthermore, we experimentally verify the controllability of the generated combined harmonics induced by the mixing of Lamb waves.

10.
Ultrasonics ; 142: 107362, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852550

RESUMEN

Zero-Group-Velocity (ZGV) Lamb waves in elastic plates had been conducted extensive theoretical and experimental researches in the field of ultrasonic nondestructive testing. The ZGV modes in complex structures had been studied theoretically, but less attention had been paid to their experimental investigation. This paper reports the experimental observation of Zero-Group-Velocity Feature Guided Waves (ZGV-FGWs) in a welded joint using the pitch-catch measurement technique with air-coupled ultrasonic transducers. Firstly, for the elastic plate, it is verified that the received time-domain signal using the pitch-catch measurement method with air-coupled ultrasonic transducers is indeed ZGV Lamb waves. Subsequently, we applied the same pitch-catch measurement method with air-coupled ultrasonic transducers to receive time-domain signals at different excitation frequencies in the welded joint. It is observed that the received time-domain signals in the welded joint oscillate for extended periods of time. By performing short-time Fourier transforms on the received time-domain signals, we analyze the frequency content of the received time-domain signals at different excitation carrier frequencies. By analyzing the spectral amplitude variations of these signals at different excitation carrier frequencies, it can be demonstrated that the spectral amplitude corresponding to the resonance frequency is the largest. These findings collectively affirm that the received time-domain signals in the welded joint exhibit ZGV characteristics, identified as ZGV-FGWs. Consequently, from an experimental perspective, the presence of ZGV-FGWs in the welded joint is verified. Moreover, the experimentally determined resonance frequency of ZGV-FGWs concurs with the results obtained through simulation. This study confirms the feasibility of using the pitch-catch measurement method with air-coupled ultrasonic transducers to excite ZGV-FGWs in a welded joint and provides a reference for future experimental investigations of ZGV-FGWs in complex structures.

11.
Ultrasonics ; 145: 107473, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39316887

RESUMEN

This paper proposed a Lamb wave-based defect imaging method with multipath edge reflections, which can detect the crack-like defect in blind zones that is invisible for the conventional delay-and-sum algorithm. In the implementation process, mirror points of transducers with respect to all the four plate edges are firstly introduced as extra virtual transmitters and receivers. By assuming the defect position, all of the potential traveling paths of edge-reflected wave packets can be next traced. Considering it is always possible to find a matching path for a certain wave packet from these traced ones if there is really a defect at the assumed place, a damage index is thus established to estimate whether the assumption holds true. Based on that, the detection area can be imaged by altering the assumed defect position, calculating its index, and taking the index as pixel value. Subsequently, wave packets of different orders from various signals are also used to generate the corresponding images. A multiplication strategy is finally adopted to fuse all the results and eliminate the artifacts. In this manner, the final image of the detection area can be obtained. Both numerical and experimental cases have been carried out to prove the effectiveness and feasibility of the proposed method. Results show that it can locate through-thickness cracks in different blind zones accurately, and the minimum relative error of these cases is only 1.12%.

12.
Nat Commun ; 15(1): 2934, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575561

RESUMEN

Ultrasonic imaging is crucial in the fields of biomedical engineering for its deep penetration capabilities and non-ionizing nature. However, traditional techniques heavily rely on impedance differences within objects, resulting in poor contrast when imaging acoustically transparent targets. Here, we propose a compact spatial differentiator for underwater isotropic edge-enhanced imaging, which enhances the imaging contrast without the need for contrast agents or external physical fields. This design incorporates an amplitude meta-grating for linear transmission along the radial direction, combined with a phase meta-grating that utilizes focus and spiral phases with a first-order topological charge. Through theoretical analysis, numerical simulations, and experimental validation, we substantiate the effectiveness of our technique in distinguishing amplitude objects with isotropic edge enhancements. Importantly, this method also enables the accurate detection of both phase objects and artificial biological models. This breakthrough creates new opportunities for applications in medical diagnosis and nondestructive testing.

13.
Ultrasonics ; 132: 106996, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37004291

RESUMEN

In this paper, modelling and numerical perspective of zero-group velocity (ZGV) combined harmonic generated by guided waves mixing are investigated. The conditions for the generation of the ZGV combined harmonic are analyzed by S0-S0 and SH0-SH0 guided waves mixing in an isotropic plate, respectively. The generation of ZGV combined harmonics at sum frequency caused by counter-directional guided waves mixing is observed. It is confirmed that the ZGV combined harmonic with a considerable magnitude can be generated by this counter-directional guided waves mixing when both the internal resonant condition and non-zero power flux are satisfied. The application of generated ZGV combined harmonics for localized material degradation assessment is numerically examined in the given plate. The obtained results indicate that the generated ZGV combined harmonic induced by the counter-directional guided waves mixing can be used to assess the localized material degradation with improved signal-to-noise ratio. This study provides an insight into the physical process of the ZGV combined harmonic generation, and meanwhile offer a promising means for localized material degradation assessment by ZGV combined harmonics generated by guided waves mixing.

14.
Ultrasonics ; 135: 107108, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37487295

RESUMEN

Considering a trade-off between temporal-spatial resolution and multi-mode nature of Lamb waves, tone bursts with short durations are usually used as excitations in Lamb wave based damage detection. A short-duration excitation usually requires a large amplitude to carry sufficient energy so as to obtain response signals with enough signal-to-noise ratio and cover a large inspection area. In this paper, an alternative Lamb wave damage imaging method using nonlinear chirp (nonlinear frequency modulation, NLFM) excitation with a long duration and a small amplitude is proposed. The signal processing techniques of pulse compression and dispersion compensation are adopted to compress the long-duration wave packets of response signals into short ones. Compared with conventional tone burst excitations with short durations and small amplitudes, due to the long duration of the nonlinear chirp excitation and the use of pulse compression, sufficient energy can be applied to transducers under small amplitude excitations so the image contrast in imaging will not degrade. Furthermore, as large amplitude excitations are no longer required, high voltage amplifiers are not necessary so the hardware of the Lamb wave testing system is simplified. Experiments on a carbon steel plate with an artificial crack are carried out and Lamb wave signals are collected using a linear array consisting of nine PZTs. Experimental results under the NLFM signal and conventional tone bursts are provided. Experimental results show that under the condition of the same excitation amplitude, the proposed method under the NLFM excitation can achieve better imaging quality compared with methods under conventional tone bursts.

15.
Ultrasonics ; 132: 106982, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36913829

RESUMEN

In this paper, the formation of theoretical error is presented to investigate the acoustic source localization (ASL) error that can be expected from traditional L-shaped, cross-shaped, square-shaped, and modified square-shaped sensor cluster arrangements. The response surface model based on the optimal Latin hypercube design is developed to theoretically study the effects of sensor placement parameters on the error evaluation index of root mean squared relative error (RMSRE) for the four techniques. The ASL results from the four techniques with the optimal placement parameters are analyzed theoretically. The relevant experiments are conducted for verifying the above theoretical research. The results show that the theoretical error, formed by the difference between the true and the predicted wave propagation directions is related to arrangement of sensors. The results also show that the sensor spacing and the cluster spacing are the two parameters that affect the ASL error most. Between these two parameters the sensor spacing has the stronger influence. The RMSRE increases with an increasing sensor spacing and a decreasing cluster spacing. Meanwhile, the interaction effect of placement parameters should be also emphasized, especially that between the sensor spacing and the cluster spacing for the L-shaped sensor cluster-based technique. Among the four cluster-based techniques, the newly modified square-shaped sensor cluster-based technique shows the smallest RMSRE and not the largest number of sensors. This research on error generation and analysis will provide guidance for the optimal sensor arrangements in cluster-based techniques.

16.
Materials (Basel) ; 16(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903160

RESUMEN

Nonlinear guided elastic waves have attracted extensive attention owing to their high sensitivity to microstructural changes. However, based on the widely used second harmonics, third harmonics and static components, it is still difficult to locate the micro-defects. Perhaps the nonlinear mixing of guided waves can solve these problems since their modes, frequencies and propagation direction can be flexibly selected. Note that the phenomena of phase mismatching usually occur due to the lack of precise acoustic properties for the measured samples, and they may affect the energy transmission from the fundamental waves to second-order harmonics as well as reduce the sensitivity to micro-damage. Therefore, these phenomena are systematically investigated to more accurately assessing the microstructural changes. It is theoretically, numerically, and experimentally found that the cumulative effect of difference- or sum-frequency components will be broken by the phase mismatching, accompanied by the appearance of the beat effect. Meanwhile, their spatial periodicity is inversely proportional to the wavenumber difference between fundamental waves and difference- or sum-frequency components. The sensitivity to micro-damage is compared between two typical mode triplets that approximately and exactly meet the resonance conditions, and the better one is utilized for assessing the accumulated plastic deformations in the thin plates.

17.
JASA Express Lett ; 2(2): 024001, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36154256

RESUMEN

A microcrack localization method based on a static component (SC) induced by a primary A0 Lamb wave is proposed. Based on the bilinear stress-strain constitutive model, a two-dimensional finite element model is built to investigate the interaction between microcracks and Lamb waves. The A0 Lamb wave at low frequency is selected to be the primary Lamb wave, which is beneficial to microcracks localization. Based on the time of flight of the generated SC pulse, an indicator named normalized amplitude index is defined for finding the location and number of microcracks. Simulation results show that one or multiple microcracks can be effectively located.

18.
Curr Opin Cell Biol ; 76: 102101, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35609365

RESUMEN

Recent advances in single-cell RNA sequencing (scRNA-seq) techniques lead to an explosion of single-cell atlases from diverse biological contexts. The information of cell-cell signaling events, which underlie multicellular organism function, is embedded in these atlases. Here, we review current strategies of mining cell-cell signaling events from single-cell transcriptomics datasets and highlight examples where functions of predicted cell-cell signaling events from single-cell atlases are further pursued to yield new insights into biological processes.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Comunicación Celular , Transducción de Señal
19.
Ultrasonics ; 124: 106761, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35597042

RESUMEN

This paper numerically and experimentally investigates the resonant behavior of one-way Lamb and SH (shear horizontal) mixing method in thin plates with quadratic nonlinearity. When the primary S0-mode Lamb waves and SH0 waves mix in the region with quadratic nonlinearity, both numerical and experimental results verify the generation of the resonant SH0 waves if the resonance condition [Formula: see text] is satisfied. Meanwhile, we find that the acoustic nonlinear parameter (ANP) increases monotonously with material quadratic nonlinearity, the length of the damage region and the frequency of the resonant wave. Furthermore, the damage region can be located by the time-domain signal of the resonant wave based on one-way S0-SH0 mixing method. This study numerically and experimentally reveals that one-way Lamb and SH mixing method is feasible to quantitatively evaluate and locate the damage region of quadratic nonlinearity in thin plates.

20.
Ultrasonics ; 124: 106770, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35643054

RESUMEN

Using the nonlinear interaction effect between ultrasonic Lamb waves and microcracks to detect and locate microcracks has the advantages of fast detection speed and high sensitivity. In this paper, a method for microcrack localization based on cross-shaped sensor clusters in a plate is proposed by combining nonlinear ultrasonic Lamb wave technology and time difference of arrival (TDOA) technology. The antisymmetric (A0) mode at low frequency is chosen as the primary Lamb wave to simplify the complication of the dispersion and multi-mode properties of Lamb waves. The selected mode pair (A0-s0) weakens the influence of the cumulative growth effect of higher harmonics induced by the inherent material nonlinearity on the microcrack characteristic signals. Pulse inversion technique and cross correlation function are used to extract the TDOAs of the nonlinear characteristic signals including microcrack information. The cross-shaped sensor clusters approach proposed for the first time can achieve reliable and fast microcrack localization without being affected by the duration of the excitation signal, and a priori knowledge of group velocities of primary wave modes or generated harmonics. Experimental and numerical results validate the proposed method in isotropic and anisotropic plates. This paper provides a new idea for nonlinear ultrasonic nondestructive evaluation and structural health monitoring of microcracks in plates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA