Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985602

RESUMEN

Thermoelectric (TE) technology, which can convert scrap heat into electricity, has attracted considerable attention. However, broader applications of TE are hindered by lacking high-performance thermoelectric materials, which can be effectively progressed by regulating the carrier concentration. In this work, a series of PbSe(NaCl)x (x = 3, 3.5, 4, 4.5) samples were synthesized through the NaCl salt-assisted approach with Na+ and Cl- doped into their lattice. Both theoretical and experimental results demonstrate that manipulating the carrier concentration by adjusting the content of NaCl is conducive to upgrading the electrical transport properties of the materials. The carrier concentration elevated from 2.71 × 1019 cm-3 to 4.16 × 1019 cm-3, and the materials demonstrated a maximum power factor of 2.9 × 10-3 W m-1 K-2. Combined with an ultralow lattice thermal conductivity of 0.7 W m-1 K-1, a high thermoelectric figure of merit (ZT) with 1.26 at 690 K was attained in PbSe(NaCl)4.5. This study provides a guideline for chemical doping to improve the thermoelectric properties of PbSe further and promote its applications.

2.
Front Chem ; 10: 889470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572100

RESUMEN

Electrochemical water splitting to produce molecular hydrogen and oxygen provides a promising strategy engineering for scalable hydrogen production with high purity. Unfortunately, the sluggish kinetics of oxygen evolution reactions (OER) due to the interdependence multiple steps procedure require high overpotential to achieve appreciable catalytic current density, resulting in relatively low energy conversion efficiencies. Therefore, development of high-performance OER electrocatalysts is vital to drive the commercial application of water splitting. This review highlights current progress of representative catalyst electrocatalysts in the past decade. Active site regulation for excellent OER performance of precious metal single atoms catalyst, high-entropy alloy, transition metals oxides, transition metal chalcogenide are emphasized. And a more in-depth exploration of OER reaction mechanism by in situ technique and DFT results will be conducted. This review can provide the basis for the development and modification of OER electrocatalysts.

3.
Nanomaterials (Basel) ; 10(1)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31940995

RESUMEN

Black phosphorus quantum dots (BPQDs) have recently obtained great attention due to their high mobility and tunable bandgap features, which are beneficial for their potential application in photoelectronic devices. However, a precise synthesis of high-quality BPQDs is still a great challenge owing to the formation of an impurity phase when employing traditional methods. Herein, we demonstrate the scalable fabrication of BPQDs from mineralization-derived bulk black phosphorus (BP) single crystals by means of a microwave (MW)-assisted liquid-phase exfoliation method in ethanol. The primary results demonstrate that ethanol plays a crucial role in determining the final properties of BPQDs, such as their excellent tolerance to oxygen, good crystallinity, and uniform size. Furthermore, the mechanism behind the formation of BPQDs is proposed, revealing that a layer-by-layer disintegration process of bulk BP crystals under microwave-energy stimuli is responsible. This work may provide a novel path for the further development of BPQDs and corresponding devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA