Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(1): 193-208, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27293189

RESUMEN

γ-Secretases are a family of intramembrane-cleaving proteases involved in various signaling pathways and diseases, including Alzheimer's disease (AD). Cells co-express differing γ-secretase complexes, including two homologous presenilins (PSENs). We examined the significance of this heterogeneity and identified a unique motif in PSEN2 that directs this γ-secretase to late endosomes/lysosomes via a phosphorylation-dependent interaction with the AP-1 adaptor complex. Accordingly, PSEN2 selectively cleaves late endosomal/lysosomal localized substrates and generates the prominent pool of intracellular Aß that contains longer Aß; familial AD (FAD)-associated mutations in PSEN2 increased the levels of longer Aß further. Moreover, a subset of FAD mutants in PSEN1, normally more broadly distributed in the cell, phenocopies PSEN2 and shifts its localization to late endosomes/lysosomes. Thus, localization of γ-secretases determines substrate specificity, while FAD-causing mutations strongly enhance accumulation of aggregation-prone Aß42 in intracellular acidic compartments. The findings reveal potentially important roles for specific intracellular, localized reactions contributing to AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/análisis , Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Presenilina-2/análisis , Complejo 1 de Proteína Adaptadora/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secuencias de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Línea Celular Tumoral , Endosomas/química , Humanos , Lisosomas/química , Ratones , Presenilina-1/análisis , Presenilina-1/química , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/química , Presenilina-2/genética , Presenilina-2/metabolismo , Ratas , Especificidad por Sustrato
2.
Nature ; 566(7744): 403-406, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728499

RESUMEN

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular , Ácido Graso Desaturasas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ácidos Oléicos/metabolismo , Palmitatos/metabolismo , Ácidos Palmíticos/metabolismo , Estearoil-CoA Desaturasa/metabolismo
3.
Mol Cell ; 65(5): 885-899.e6, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28238652

RESUMEN

Loss of ER Ca2+ homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca2+. Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca2+ fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca2+ store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca2+ elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/enzimología , Actinas/metabolismo , Membrana Celular/enzimología , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Filaminas/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Filaminas/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Interferencia de ARN , Transducción de Señal , Molécula de Interacción Estromal 1/metabolismo , Sinaptotagmina I/metabolismo , Factores de Tiempo , Transfección , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
4.
J Med Genet ; 60(5): 511-522, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36216457

RESUMEN

BACKGROUND: Variants in PPP2R5D, affecting the regulatory B56δ subunit of protein phosphatase 2A (PP2A), have been identified in individuals with neurodevelopmental abnormalities. However, the molecular and clinical spectra remain incompletely understood. METHODS: Individuals with PPP2R5D variants were enrolled through Simons Variation in Individuals Project/Simons Searchlight. Data were collected from medical history interviews, medical record review, online validated instruments and neuroimaging review. Genetic variants were biochemically characterised. RESULTS: We studied 76 individuals with PPP2R5D variants, including 68 with pathogenic de novo variants, four with a variant of uncertain significance (VUS) and four siblings with a novel dominantly inherited pathogenic variant. Among 13 pathogenic variants, eight were novel and two (p.Glu198Lys and p.Glu200Lys) were highly recurrent. Functional analysis revealed impaired PP2A A/C-subunit binding, decreased short linear interaction motif-dependent substrate binding or both-with the most severe phenotypes associated with variants that completely retained one of these binding characteristics and lost the other-further supporting a dominant-negative disease mechanism. p.Glu198Lys showed the highest C-binding defect and a more severe clinical phenotype. The inherited p.Glu197Gly variant had a mild substrate binding defect, and three of four VUS had no biochemical impact. Common clinical phenotypes were language, intellectual or learning disabilities (80.6%), hypotonia (75.0%), macrocephaly (66.7%), seizures (45.8%) and autism spectrum disorder (26.4%). The mean composite Vineland score was 59.8, and most participants were in the 'moderate to low' and 'low' adaptive levels in all domains. CONCLUSION: Our study delineates the most common features of PPP2R5D-related neurodevelopmental disorders, expands the clinical and molecular spectrum and identifies genotype-phenotype correlations.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastorno del Espectro Autista/genética , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteína Fosfatasa 2/genética
5.
EMBO J ; 38(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30777856

RESUMEN

The sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) performs active reuptake of cytoplasmic Ca2+ and is a major regulator of cardiac muscle contractility. Dysfunction or dysregulation of SERCA2a is associated with heart failure, while restoring its function is considered as a therapeutic strategy to restore cardiac performance. However, its structure has not yet been determined. Based on native, active protein purified from pig ventricular muscle, we present the first crystal structures of SERCA2a, determined in the CPA-stabilized E2-AlF4- form (3.3 Å) and the Ca2+-occluded [Ca2]E1-AMPPCP form (4.0 Å). The structures are similar to the skeletal muscle isoform SERCA1a pointing to a conserved mechanism. We seek to explain the kinetic differences between SERCA1a and SERCA2a. We find that several isoform-specific residues are acceptor sites for post-translational modifications. In addition, molecular dynamics simulations predict that isoform-specific residues support distinct intramolecular interactions in SERCA2a and SERCA1a. Our experimental observations further indicate that isoform-specific intramolecular interactions are functionally relevant, and may explain the kinetic differences between SERCA2a and SERCA1a.


Asunto(s)
Corazón/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia , Porcinos
6.
Ann Rheum Dis ; 82(4): 546-555, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36572507

RESUMEN

OBJECTIVES: To discover new and detect known antisynthetase autoantibodies (ASAs) through protein immunoprecipitation combined with gel-free liquid chromatography-tandem mass spectrometry (IP-MS). METHODS: IP-MS was performed using sera of individuals showing features of antisynthetase syndrome (ASyS) without (n=5) and with (n=12) previously detected ASAs, and healthy controls (n=4). New candidate aminoacyl-tRNA-synthetase (ARS) autoantigens identified through unbiased IP-MS were confirmed by IP-western blot. A targeted IP-MS assay for various ASA specificities was developed and validated with sera of patients with known ASAs (n=16), disease controls (n=20) and healthy controls (n=25). The targeted IP-MS assay was applied in an additional cohort of patients with multiple ASyS features or isolated myositis without previously detected ASAs (n=26). RESULTS: Autoantibodies to cytoplasmic cysteinyl-tRNA-synthetase (CARS1) were identified by IP-MS and confirmed by western blot as a new ASA specificity, named anti-Ly, in the serum of a patient with ASyS features. Rare ASAs, such as anti-OJ, anti-Zo and anti-KS, and common ASAs could also be identified by IP-MS. A targeted IP-MS approach for ASA detection was developed and validated. Application of this method in an additional cohort identified an additional patient with anti-OJ autoantibodies that were missed by line and dot immunoassays. DISCUSSION: CARS1 is the dominant cognate ARS autoantigen of the newly discovered anti-Ly ASA specificity. Rare and common ASA specificities could be detected by both unbiased and targeted IP-MS. Unbiased and targeted IP-MS are promising methods for discovery and detection of autoantibodies, especially autoantibodies that target complex autoantigens.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Miositis , Humanos , Autoanticuerpos , Autoantígenos , ARN de Transferencia
7.
J Transl Med ; 21(1): 317, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170215

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a low survival, its incidence is rising and little therapeutic improvements are expected in the near future. It has been observed that Epithelial-to-Mesenchymal transition (EMT) contributes (including in PDAC) to a more aggressive cancer phenotype. Additionally, largely unexplored, studies indicate a mechanistic interplay between Protein Phosphatase Type 2A (PP2A) enzymes and EMT that could offer treatment opportunities. The aim was to investigate the relation of a PP2A expression signature (encompassing all PP2A subunits, endogenous inhibitors and activators) with EMT and aggressive pancreatic cancer, and to discuss possible implications. METHODS: We retrieved different PDAC expression datasets from NCBI to capture the variation in patients, and analyzed these using datamining, survival analysis, differential gene and protein expression. We determined genes highly associated with aggressive PDAC. For in vitro evaluation, Panc-1 cells were treated with the pharmacologic PP2A inhibitor Okadaic Acid (OA). Additionally, two OA-resistant Panc-1 clones were developed and characterized. RESULTS: In patients, there is a strong correlation between EMT and aggressive PDAC, and between aggressive PDAC and PP2A, with a significant upregulation of PP2A inhibitor genes. Several PP2A genes significantly correlated with decreased survival. In vitro, short-term exposure to OA induced EMT in Panc-1 cells. This shift towards EMT was further pronounced in the OA-resistant Panc-1 clones, morphologically and by pathway analysis. Proteomic analysis and gene sequencing showed that the advanced OA-resistant model most resembles the clinical PDAC presentation (with EMT signature, and with several specific PP2A genes upregulated, and others downregulated). CONCLUSIONS: We demonstrated a strong association between EMT, altered PP2A expression and aggressive PDAC in patients. Also, in vitro, PP2A inhibition induces EMT. Overall, statistics suggests the mechanistic importance of PP2A dysregulation for PDAC progression. Translationally, our observations indicate that pharmacologic restoration of PP2A activity could be an attractive therapeutic strategy to block or reverse progression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteómica , Proliferación Celular/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Transición Epitelial-Mesenquimal/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
8.
J Autoimmun ; 139: 103056, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302272

RESUMEN

ObjectiveMultiple spliceosome components are known autoantigens in systemic sclerosis (SSc). Here we aim to identify new and characterize rare anti-spliceosomal autoantibodies in patients with SSc without known autoantibody specificity. MethodsSera that precipitated spliceosome subcomplexes, as detected by immunoprecipitation-mass spectrometry (IP-MS), were identified from a database of 106 patients with SSc without known autoantibody specificity. New autoantibody specificities were confirmed with immunoprecipitation-western blot. The IP-MS pattern of new anti-spliceosomal autoantibodies was compared with anti-U1 RNP-positive sera of patients with different systemic autoimmune rheumatic diseases and anti-SmD-positive sera of patients with systemic lupus erythematosus (n = 24). ResultsThe NineTeen Complex (NTC) was identified and confirmed as new spliceosomal autoantigen in one patient with SSc. U5 RNP, as well as additional splicing factors, were precipitated by the serum of another patient with SSc. The IP-MS patterns of anti-NTC and anti-U5 RNP autoantibodies were distinct from those of anti-U1 RNP- and anti-SmD-positive sera. Furthermore, there was no difference in IP-MS patterns between a limited number of anti-U1 RNP-positive sera of patients with different systemic autoimmune rheumatic diseases. ConclusionAnti-NTC autoantibodies are a new anti-spliceosomal autoantibody specificity, here first identified in a patient with SSc. Anti-U5 RNP autoantibodies are a distinct but rare anti-spliceosomal autoantibody specificity. All major spliceosomal subcomplexes have now been described as target of autoantibodies in systemic autoimmune diseases.


Asunto(s)
Lupus Eritematoso Sistémico , Enfermedades Reumáticas , Esclerodermia Sistémica , Humanos , Autoanticuerpos , Empalmosomas/química , Lupus Eritematoso Sistémico/diagnóstico , Anticuerpos Antinucleares , Autoantígenos
9.
J Autoimmun ; 135: 102988, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634459

RESUMEN

PURPOSE: In up to 20% of patients with systemic sclerosis (SSc) no known autoantibody specificity can be identified. Recently discovered autoantigens, such as telomeric repeat binding factor 1 (TERF1), as well as established autoantigens, like RuvBL1/2, are associated with telomere and telomerase biology. We aimed to identify new telomere- and telomerase-associated autoantigens in patients with SSc without known autoantibody specificity. METHODS: Unlabelled protein immunoprecipitation combined with gel-free liquid chromatography-tandem mass spectrometry (IP-MS) was performed with sera of 106 patients with SSc from two tertiary referral centres that had a nuclear pattern on HEp-2 indirect immunofluorescence without previously identified autoantibody. Telomere- or telomerase-associated proteins or protein complexes precipitated by individual sera were identified. Candidate autoantigens were confirmed through immunoprecipitation-western blot (IP-WB). A custom Luminex xMAP assay for 5 proteins was evaluated with sera from persons with SSc (n = 467), other systemic autoimmune rheumatic diseases (n = 923), non-rheumatic disease controls (n = 187) and healthy controls (n = 199). RESULTS: Eight telomere- and telomerase-associated autoantigens were identified in a total of 11 index patients, including the THO complex (n = 3, all with interstitial lung disease and two with cardiac involvement), telomeric repeat-binding factor 2 (TERF2, n = 1), homeobox-containing protein 1 (HMBOX1, n = 2), regulator of chromosome condensation 1 (RCC1, n = 1), nucleolar and coiled-body phosphoprotein 1 (NOLC1, n = 1), dyskerin (DKC1, n = 1), probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase (NOP2, n = 1) and nuclear valosin-containing protein-like (NVL, n = 2). A Luminex xMAP assay for THO complex subunit 1 (THOC1), TERF2, NOLC1, NOP2 and NVL revealed high reactivity in all index patients, but also in other patients with SSc and disease controls. However, the reactivity by xMAP assay in these other patients was not confirmed by IP-WB. CONCLUSION: IP-MS revealed key telomere- and telomerase-associated proteins and protein complexes as autoantigens in patients with SSc.


Asunto(s)
Esclerodermia Sistémica , Telomerasa , Humanos , Autoantígenos , Telomerasa/metabolismo , Autoanticuerpos , Telómero , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN
10.
Clin Chem Lab Med ; 61(3): 435-441, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36445291

RESUMEN

OBJECTIVES: Antinuclear antibodies (ANAs) are associated with several autoimmune diseases. Indirect immunofluorescence (IIF) on human epithelial type 2 (HEp-2) cells is the golden standard for ANA detection in the clinic. In case of a positive HEp-2 IIF test result, follow-up tests are done to determine autoantibody specificity. For a fraction of the HEp-2 IIF-positive samples, the nature of the autoantigens remains uncharacterized. Our objective was to characterize autoantigens in such samples. METHODS: To characterize autoantigens in an unbiased way, we combined protein immunoprecipitation with liquid chromatography (LC) tandem mass spectrometry (MS/MS) sequencing. RESULTS: Using such approach we detected the Ki antigen, also referred to as PA28γ, in the immunoprecipitate of serum samples of three individuals with an autoimmune disease. The HEp-2 nuclear speckled IIF fluorescent signal of all three serum samples was abolished after pre-absorption of the serum with recombinant Ki antigen, confirming that autoantibodies against Ki underlie the HEp-2 IIF signal. CONCLUSIONS: Our data suggest that anti-Ki autoantibodies can underlie a nuclear speckled HEp-2 IIF pattern.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Humanos , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Espectrometría de Masas en Tándem , Autoantígenos , Anticuerpos Antinucleares , Enfermedades Autoinmunes/diagnóstico
11.
J Proteome Res ; 20(2): 1405-1414, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33372785

RESUMEN

Enzymatic deamidation, the conversion of glutamine (Gln) into glutamic acid (Glu) residues, mediated by tissue transglutaminase enzymes, can provoke autoimmunity by generating altered self-epitopes, a process well-known in celiac disease and more recently also described in type 1 diabetes (T1D). To identify deamidated proteins, liquid chromatography-tandem mass spectrometry is the method of choice. However, as nonenzymatic deamidations on asparagine (Asn) and to a minor extent on Gln are frequently induced in vitro during proteomics sample preparation, the accurate detection of in vivo deamidation can be hampered. Here we report on the optimization of a method to reduce in vitro generated deamidation by 70% using improved trypsin digestion conditions (90 min/pH 8). We also point to the critical importance of manual inspection of MS2 spectra, considering that only 55% of the high quality peptides with Gln deamidation were assigned correctly using an automated search algorithm. As proof of principal, using these criteria, we showed a significant increase in levels of both Asn and Gln deamidation in cytokine-exposed murine MIN6 ß-cells, paralleled by an increase in tissue transglutaminase activity. These findings add evidence to the hypothesis that deamidation is occurring in stressed ß-cell proteins and can be involved in the autoimmune process in T1D.


Asunto(s)
Citocinas , Espectrometría de Masas en Tándem , Amidas , Animales , Asparagina , Cromatografía Liquida , Digestión , Ratones , Péptidos
12.
Chembiochem ; 22(5): 834-838, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33085143

RESUMEN

Phosphoprotein phosphatase-1 (PP1) is a key player in the regulation of phospho-serine (pSer) and phospho-threonine (pThr) dephosphorylation and is involved in a large fraction of cellular signaling pathways. Aberrant activity of PP1 has been linked to many diseases, including cancer and heart failure. Besides a well-established activity control by regulatory proteins, an inhibitory function for phosphorylation (p) of a Thr residue in the C-terminal intrinsically disordered tail of PP1 has been demonstrated. The associated phenotype of cell-cycle arrest was repeatedly proposed to be due to autoinhibition of PP1 through either conformational changes or substrate competition. Here, we use PP1 variants created by mutations and protein semisynthesis to differentiate between these hypotheses. Our data support the hypothesis that pThr exerts its inhibitory function by mediating protein complex formation rather than by a direct mechanism of structural changes or substrate competition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Serina/química , Treonina/química , Humanos , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Fosfatasa 1/genética
13.
Biochem Soc Trans ; 49(4): 1567-1588, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34241636

RESUMEN

By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.


Asunto(s)
Encéfalo/fisiología , Discapacidad Intelectual/genética , Isoenzimas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteína Fosfatasa 2/genética , Animales , Encéfalo/crecimiento & desarrollo , Humanos , Discapacidad Intelectual/enzimología , Isoenzimas/metabolismo , Ratones , Trastornos del Neurodesarrollo/enzimología , Proteína Fosfatasa 2/metabolismo , Especificidad por Sustrato
14.
Gut ; 68(8): 1406-1416, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30472681

RESUMEN

OBJECTIVES: Vagus nerve stimulation (VNS), most likely via enteric neurons, prevents postoperative ileus (POI) by reducing activation of alpha7 nicotinic receptor (α7nAChR) positive muscularis macrophages (mMφ) and dampening surgery-induced intestinal inflammation. Here, we evaluated if 5-HT4 receptor (5-HT4R) agonist prucalopride can mimic this effect in mice and human. DESIGN: Using Ca2+ imaging, the effect of electrical field stimulation (EFS) and prucalopride was evaluated in situ on mMφ activation evoked by ATP in jejunal muscularis tissue. Next, preoperative and postoperative administration of prucalopride (1-5 mg/kg) was compared with that of preoperative VNS in a model of POI in wild-type and α7nAChR knockout mice. Finally, in a pilot study, patients undergoing a Whipple procedure were preoperatively treated with prucalopride (n=10), abdominal VNS (n=10) or sham/placebo (n=10) to evaluate the effect on intestinal inflammation and clinical recovery of POI. RESULTS: EFS reduced the ATP-induced Ca2+ response of mMφ, an effect that was dampened by neurotoxins tetrodotoxin and ω-conotoxin and mimicked by prucalopride. In vivo, prucalopride administered before, but not after abdominal surgery reduced intestinal inflammation and prevented POI in wild-type, but not in α7nAChR knockout mice. In humans, preoperative administration of prucalopride, but not of VNS, decreased Il6 and Il8 expression in the muscularis externa and improved clinical recovery. CONCLUSION: Enteric neurons dampen mMφ activation, an effect mimicked by prucalopride. Preoperative, but not postoperative treatment with prucalopride prevents intestinal inflammation and shortens POI in both mice and human, indicating that preoperative administration of 5-HT4R agonists should be further evaluated as a treatment of POI. TRIAL REGISTRATION NUMBER: NCT02425774.


Asunto(s)
Benzofuranos , Ileus , Intestino Delgado , Músculo Liso , Pancreaticoduodenectomía/efectos adversos , Complicaciones Posoperatorias , Adulto , Animales , Benzofuranos/administración & dosificación , Benzofuranos/farmacología , Modelos Animales de Enfermedad , Femenino , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Ileus/etiología , Ileus/inmunología , Ileus/fisiopatología , Ileus/prevención & control , Inflamación/inmunología , Inflamación/prevención & control , Intestino Delgado/inmunología , Intestino Delgado/inervación , Intestino Delgado/patología , Intestino Delgado/fisiopatología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Músculo Liso/efectos de los fármacos , Músculo Liso/patología , Músculo Liso/fisiopatología , Pancreaticoduodenectomía/métodos , Proyectos Piloto , Complicaciones Posoperatorias/inmunología , Complicaciones Posoperatorias/fisiopatología , Complicaciones Posoperatorias/prevención & control , Agonistas del Receptor de Serotonina 5-HT4/administración & dosificación , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Resultado del Tratamiento , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
15.
J Biol Chem ; 293(39): 15152-15162, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30115685

RESUMEN

The protein Ser/Thr phosphatase PP1 catalyzes an important fraction of protein dephosphorylation events and forms highly specific holoenzymes through an association with regulatory interactors of protein phosphatase one (RIPPOs). The functional characterization of individual PP1 holoenzymes is hampered by the lack of straightforward strategies for substrate mapping. Because efficient substrate recruitment often involves binding to both PP1 and its associated RIPPO, here we examined whether PP1-RIPPO fusions can be used to trap substrates for further analysis. Fusions of an hypoactive point mutant of PP1 and either of four tested RIPPOs accumulated in HEK293T cells with their associated substrates and were co-immunoprecipitated for subsequent identification of the substrates by immunoblotting or MS analysis. Hypoactive fusions were also used to study RIPPOs themselves as substrates for associated PP1. In contrast, substrate trapping was barely detected with active PP1-RIPPO fusions or with nonfused PP1 or RIPPO subunits. Our results suggest that hypoactive fusions of PP1 subunits represent an easy-to-use tool for substrate identification of individual holoenzymes.


Asunto(s)
Núcleo Celular/química , Holoenzimas/química , Proteína Fosfatasa 1/química , Receptores de Neuropéptido Y/química , Animales , Sitios de Unión , Células COS , Núcleo Celular/genética , Chlorocebus aethiops/genética , Células HEK293 , Holoenzimas/genética , Humanos , Inmunoprecipitación , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/genética , Receptores de Neuropéptido Y/genética , Especificidad por Sustrato
16.
J Cell Sci ; 129(6): 1101-14, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26826186

RESUMEN

Phosphoinositides, particularly phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], are recognized by SHIP2 (also known as INPPL1) a member of the inositol polyphosphate 5-phosphatase family. SHIP2 dephosphorylates PI(3,4,5)P3 to form PI(3,4)P2; the latter interacts with specific target proteins (e.g. lamellipodin). Although the preferred SHIP2 substrate is PI(3,4,5)P3, PI(4,5)P2 can also be dephosphorylated by this enzyme to phosphatidylinositol 4-phosphate (PI4P). Through depletion of SHIP2 in the glioblastoma cell line 1321 N1, we show that SHIP2 inhibits cell migration. In different glioblastoma cell lines and primary cultures, SHIP2 staining at the plasma membrane partly overlaps with PI(4,5)P2 immunoreactivity. PI(4,5)P2 was upregulated in SHIP2-deficient N1 cells as compared to control cells; in contrast, PI4P was very much decreased in SHIP2-deficient cells. Therefore, SHIP2 controls both PI(3,4,5)P3 and PI(4,5)P2 levels in intact cells. In 1321 N1 cells, the PI(4,5)P2-binding protein myosin-1c was identified as a new interactor of SHIP2. Regulation of PI(4,5)P2 and PI4P content by SHIP2 controls 1321 N1 cell migration through the organization of focal adhesions. Thus, our results reveal a new role of SHIP2 in the control of PI(4,5)P2, PI4P and cell migration in PTEN-deficient glioblastoma 1321 N1 cells.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular , Glioblastoma/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Línea Celular Tumoral , Membrana Celular/genética , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética
17.
Int J Cancer ; 137(7): 1539-48, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25784292

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfolípidos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/química , Humanos , Neoplasias Pulmonares/química , Fosfatidilinositoles/metabolismo , Fosfolípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Esfingomielinas/metabolismo , Espectrometría de Masas en Tándem/métodos
18.
Drug Discov Today Technol ; 13: 33-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26190681

RESUMEN

Numerous human pathologies, including common conditions such as obesity, diabetes, cardiovascular disease, cancer, inflammatory disease and neurodegeneration, involve changes in lipid metabolism. Likewise, a growing number of drugs are being developed that directly or indirectly affect lipid metabolic pathways. Instead of classical and cumbrous radiochemical analyses, lipid profiling by mass spectrometry (MS)-based lipidomics holds great potential as companion diagnostic in several steps along the drug development process. In this review we describe some typical lipidomics set-ups and illustrate how these technologies can be implemented in target discovery, compound screening, in vitro and in vivo preclinical testing, toxicity testing of drugs, and prediction and monitoring of response.


Asunto(s)
Descubrimiento de Drogas , Metabolismo de los Lípidos , Metabolómica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Terapia Molecular Dirigida
19.
Nucleic Acids Res ; 41(2): 842-54, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23241245

RESUMEN

The histone methyltransferase EZH2 regulates cell proliferation and differentiation by silencing Polycomb group target genes. NIPP1, a nuclear regulator of serine/threonine protein phosphatase 1 (PP1), has been implicated in the regulation of EZH2 occupancy at target loci, but the underlying mechanism is not understood. Here, we demonstrate that the phosphorylation of EZH2 by cyclin-dependent kinases at Thr416 creates a docking site for the ForkHead-associated domain of NIPP1. Recruited NIPP1 enables the net phosphorylation of EZH2 by inhibiting its dephosphorylation by PP1. Accordingly, a NIPP1-binding mutant of EZH2 is hypophosphorylated, and the knockdown of NIPP1 results in a reduced phosphorylation of endogenous EZH2. Conversely, the loss of PP1 is associated with a hyperphosphorylation of EZH2. A genome-wide promoter-binding profiling in HeLa cells revealed that the NIPP1-binding mutant shows a deficient association with about a third of the Polycomb target genes, and these are enriched for functions in proliferation. Our data identify PP1 as an EZH2 phosphatase and demonstrate that the phosphorylation-regulated association of EZH2 with proliferation-related targets depends on associated NIPP1.


Asunto(s)
Endorribonucleasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Animales , Proliferación Celular , Endorribonucleasas/química , Proteína Potenciadora del Homólogo Zeste 2 , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Fosfoproteínas Fosfatasas/química , Fosforilación , Complejo Represivo Polycomb 2/química , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión al ARN/química , Treonina/metabolismo
20.
J Neurochem ; 131(2): 239-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24947832

RESUMEN

Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. LRRK1 and LRRK2 (leucine-rich repeat kinase) interaction partners were identified by two different protein-protein interaction screens. These confirmed epidermal growth factor receptor (EGR-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. Functional analysis of these interactions and the pathways they mediate shows that LRRK1 and LRRK2 signaling do not intersect, reflective of the differential role of both LRRKs in Parkinson's disease.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA