Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32300252

RESUMEN

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Asunto(s)
Investigación Biomédica/normas , Transición Epitelial-Mesenquimal , Animales , Movimiento Celular , Plasticidad de la Célula , Consenso , Biología Evolutiva/normas , Humanos , Neoplasias/patología , Terminología como Asunto
3.
Nat Rev Mol Cell Biol ; 15(3): 178-96, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24556840

RESUMEN

The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-ß (TGFß) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Movimiento Celular , Citoesqueleto/fisiología , Transición Epitelial-Mesenquimal/genética , Humanos , ARN/genética , Transducción de Señal , Factores de Transcripción/metabolismo
4.
J Pathol ; 254(4): 358-373, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33834494

RESUMEN

Many chronic diseases are marked by fibrosis, which is defined by an abundance of activated fibroblasts and excessive deposition of extracellular matrix, resulting in loss of normal function of the affected organs. The initiation and progression of fibrosis are elaborated by pro-fibrotic cytokines, the most critical of which is transforming growth factor-ß1 (TGF-ß1). This review focuses on the fibrogenic roles of increased TGF-ß activities and underlying signaling mechanisms in the activated fibroblast population and other cell types that contribute to progression of fibrosis. Insight into these roles and mechanisms of TGF-ß as a universal driver of fibrosis has stimulated the development of therapeutic interventions to attenuate fibrosis progression, based on interference with TGF-ß signaling. Their promise in preclinical and clinical settings will be discussed. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Fibrosis , Factor de Crecimiento Transformador beta , Animales , Humanos
5.
Mol Cell ; 56(6): 723-37, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25526531

RESUMEN

TGF-ß signaling is essential in many processes, including immune surveillance, and its dysregulation controls various diseases, including cancer, fibrosis, and inflammation. Studying the innate host defense, which functions in most cell types, we found that RLR signaling represses TGF-ß responses. This regulation is mediated by activated IRF3, using a dual mechanism of IRF3-directed suppression. Activated IRF3 interacts with Smad3, thus inhibiting TGF-ß-induced Smad3 activation and, in the nucleus, disrupts functional Smad3 transcription complexes by competing with coregulators. Consequently, IRF3 activation by innate antiviral signaling represses TGF-ß-induced growth inhibition, gene regulation and epithelial-mesenchymal transition, and the generation of Treg effector lymphocytes from naive CD4(+) lymphocytes. Conversely, silencing IRF3 expression enhances epithelial-mesenchymal transition, TGF-ß-induced Treg cell differentiation upon virus infection, and Treg cell generation in vivo. We present a mechanism of regulation of TGF-ß signaling by the antiviral defense, with evidence for its role in immune tolerance and cancer cell behavior.


Asunto(s)
Factor 3 Regulador del Interferón/fisiología , Virus Sendai/inmunología , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Animales , Diferenciación Celular , Transición Epitelial-Mesenquimal , Células HEK293 , Células Hep G2 , Humanos , Inmunidad Innata , Ratones Endogámicos C57BL , Transducción de Señal , Linfocitos T Reguladores/inmunología , Transcripción Genética , Activación Transcripcional/inmunología
6.
Mol Cell ; 51(1): 5-19, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23747011

RESUMEN

Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-ß family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the initiation of BMP signaling. We now show that arginine methylation, which is known to regulate gene expression, yet also modifies some signaling mediators, initiates BMP-induced Smad signaling. BMP-induced receptor complex formation promotes interaction of the methyltransferase PRMT1 with the inhibitory Smad6, resulting in Smad6 methylation and relocalization at the receptor, leading to activation of effector Smads through phosphorylation. PRMT1 is required for BMP-induced biological responses across species, as evidenced by the role of its ortholog Dart1 in BMP signaling during Drosophila wing development. Activation of signaling by arginine methylation may also apply to other signaling pathways.


Asunto(s)
Arginina/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Línea Celular , Células HEK293 , Humanos , Metilación , Fosforilación , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteína smad6/análisis , Proteína smad6/química , Proteína smad6/metabolismo
7.
J Biol Chem ; 294(21): 8490-8504, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30948511

RESUMEN

Functional activation of the transforming growth factor-ß (TGF-ß) receptors (TGFBRs) is carefully regulated through integration of post-translational modifications, spatial regulation at the cellular level, and TGFBR availability at the cell surface. Although the bulk of TGFBRs resides inside the cells, AKT Ser/Thr kinase (AKT) activation in response to insulin or other growth factors rapidly induces transport of TGFBRs to the cell surface, thereby increasing the cell's responsiveness to TGF-ß. We now demonstrate that TGF-ß itself induces a rapid translocation of its own receptors to the cell surface and thus amplifies its own response. This mechanism of response amplification, which hitherto has not been reported for other cell-surface receptors, depended on AKT activation and TGF-ß type I receptor kinase. In addition to an increase in cell-surface TGFBR levels, TGF-ß treatment promoted TGFBR internalization, suggesting an overall amplification of TGFBR cycling. The TGF-ß-induced increase in receptor presentation at the cell surface amplified TGF-ß-induced SMAD family member (SMAD) activation and gene expression. Furthermore, bone morphogenetic protein 4 (BMP-4), which also induces AKT activation, increased TGFBR levels at the cell surface, leading to enhanced autocrine activation of TGF-ß-responsive SMADs and gene expression, providing context for the activation of TGF-ß signaling in response to BMP during development. In summary, our results indicate that TGF-ß- and BMP-induced activation of low levels of cell surface-associated TGFBRs rapidly mobilizes additional TGFBRs from intracellular stores to the cell surface, increasing the abundance of cell-surface TGFBRs and cells' responsiveness to TGF-ß signaling.


Asunto(s)
Receptor Tipo I de Factor de Crecimiento Transformador beta/biosíntesis , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba , Células A549 , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Humanos , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Proteínas Smad/genética , Factor de Crecimiento Transformador beta/genética
8.
EMBO Rep ; 19(1): 135-155, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233829

RESUMEN

During epithelial-mesenchymal transition (EMT), reprogramming of gene expression is accompanied by histone modifications. Whether EMT-promoting signaling directs functional changes in histone methylation has not been established. We show here that the histone lysine methyltransferase SETDB1 represses EMT and that, during TGF-ß-induced EMT, cells attenuate SETDB1 expression to relieve this inhibition. SETDB1 also controls stem cell generation, cancer cell motility, invasion, metastatic dissemination, as well as sensitivity to certain cancer drugs. These functions may explain the correlation of breast cancer patient survival with SETDB1 expression. At the molecular level, TGF-ß induces SETDB1 recruitment by Smad3, to repress Smad3/4-activated transcription of SNAI1, encoding the EMT "master" transcription factor SNAIL1. Suppression of SNAIL1-mediated gene reprogramming by SETDB1 occurs through H3K9 methylation at the SNAI1 gene that represses its H3K9 acetylation imposed by activated Smad3/4 complexes. SETDB1 therefore defines a TGF-ß-regulated balance between histone methylation and acetylation that controls EMT.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal/genética , Transición Epitelial-Mesenquimal/genética , Histonas/genética , Proteína Metiltransferasas/genética , Proteína smad3/genética , Factores de Transcripción de la Familia Snail/genética , Acetilación , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patología , Línea Celular Tumoral , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metilación , Ratones , Proteína Metiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Proteína smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Factor de Crecimiento Transformador beta/farmacología
9.
J Biol Chem ; 293(34): 13059-13072, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29907569

RESUMEN

The epithelial-to-mesenchymal transdifferentiation (EMT) is crucial for tissue differentiation in development and drives essential steps in cancer and fibrosis. EMT is accompanied by reprogramming of gene expression and has been associated with the epithelial stem-cell state in normal and carcinoma cells. The cytokine transforming growth factor ß (TGF-ß) drives this program in cooperation with other signaling pathways and through TGF-ß-activated SMAD3 as the major effector. TGF-ß-induced SMAD3 activation is inhibited by SMAD7 and to a lesser extent by SMAD6, and SMAD6 and SMAD7 both inhibit SMAD1 and SMAD5 activation in response to the TGF-ß-related bone morphogenetic proteins (BMPs). We previously reported that, in response to BMP, protein arginine methyltransferase 1 (PRMT1) methylates SMAD6 at the BMP receptor complex, thereby promoting its dissociation from the receptors and enabling BMP-induced SMAD1 and SMAD5 activation. We now provide evidence that PRMT1 also facilitates TGF-ß signaling by methylating SMAD7, which complements SMAD6 methylation. We found that PRMT1 is required for TGF-ß-induced SMAD3 activation, through a mechanism similar to that of BMP-induced SMAD6 methylation, and thus promotes the TGF-ß-induced EMT and epithelial stem-cell generation. This critical mechanism positions PRMT1 as an essential mediator of TGF-ß signaling that controls the EMT and epithelial cell stemness through SMAD7 methylation.


Asunto(s)
Arginina/química , Células Epiteliales/citología , Transición Epitelial-Mesenquimal , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Proteína smad7/metabolismo , Células Madre/citología , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Células Epiteliales/fisiología , Humanos , Metilación , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética , Piel/citología , Piel/metabolismo , Proteína smad7/genética , Células Madre/fisiología , Factor de Crecimiento Transformador beta1/genética
11.
Proc Natl Acad Sci U S A ; 113(44): 12478-12483, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27738243

RESUMEN

Developmental signaling molecules are used for cell fate determination, and understanding how their combinatorial effects produce the variety of cell types in multicellular organisms is a key problem in biology. Here, we demonstrate that the combination of leukemia inhibitory factor (LIF), bone morphogenetic protein 4 (BMP4), lysophosphatidic acid (LPA), and ascorbic acid (AA) efficiently converts mouse primed pluripotent stem cells (PSCs) into naive PSCs. Signaling by the lipid LPA through its receptor LPAR1 and downstream effector Rho-associated protein kinase (ROCK) cooperated with LIF signaling to promote this conversion. BMP4, which also stimulates conversion to naive pluripotency, bypassed the need for exogenous LPA by increasing the activity of the extracellular LPA-producing enzyme autotaxin (ATX). We found that LIF and LPA-LPAR1 signaling affect the abundance of signal transducer and activator of transcription 3 (STAT3), which induces a previously unappreciated Kruppel-like factor (KLF)2-KLF4-PR domain 14 (PRDM14) transcription factor circuit key to establish naive pluripotency. AA also affects this transcription factor circuit by controlling PRDM14 expression. Thus, our study reveals that ATX-mediated autocrine lipid signaling promotes naive pluripotency by intersecting with LIF and BMP4 signaling.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Factor Inhibidor de Leucemia/farmacología , Lisofosfolípidos/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Ácido Ascórbico/farmacología , Línea Celular , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Factor 4 Similar a Kruppel , Ratones Endogámicos C57BL , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/genética , Vitaminas/farmacología
12.
PLoS Biol ; 13(12): e1002325, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26680585

RESUMEN

Epithelial-mesenchymal transition (EMT) is a normal cell differentiation event during development and contributes pathologically to carcinoma and fibrosis progression. EMT often associates with increased transforming growth factor-ß (TGF-ß) signaling, and TGF-ß drives EMT, in part through Smad-mediated reprogramming of gene expression. TGF-ß also activates the Erk MAPK pathway through recruitment and Tyr phosphorylation of the adaptor protein ShcA by the activated TGF-ß type I receptor. We found that ShcA protects the epithelial integrity of nontransformed cells against EMT by repressing TGF-ß-induced, Smad-mediated gene expression. p52ShcA competed with Smad3 for TGF-ß receptor binding, and down-regulation of ShcA expression enhanced autocrine TGF-ß/Smad signaling and target gene expression, whereas increased p52ShcA expression resulted in decreased Smad3 binding to the TGF-ß receptor, decreased Smad3 activation, and increased Erk MAPK and Akt signaling. Furthermore, p52ShcA sequestered TGF-ß receptor complexes to caveolin-associated membrane compartments, and reducing ShcA expression enhanced the receptor localization in clathrin-associated membrane compartments that enable Smad activation. Consequently, silencing ShcA expression induced EMT, with increased cell migration, invasion, and dissemination, and increased stem cell generation and mammosphere formation, dependent upon autocrine TGF-ß signaling. These findings position ShcA as a determinant of the epithelial phenotype by repressing TGF-ß-induced Smad activation through differential partitioning of receptor complexes at the cell surface.


Asunto(s)
Transición Epitelial-Mesenquimal , Queratinocitos/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Proteína smad3/agonistas , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Queratinocitos/citología , Queratinocitos/patología , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Interferencia de ARN , Proteínas Adaptadoras de la Señalización Shc/antagonistas & inhibidores , Proteínas Adaptadoras de la Señalización Shc/genética , Proteína Smad2/agonistas , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src
13.
Mol Cell ; 37(4): 551-66, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188673

RESUMEN

Inflammatory stimuli activate ectodomain shedding of TNF-alpha, L-selectin, and other transmembrane proteins. We show that p38 MAP kinase, which is activated in response to inflammatory or stress signals, directly activates TACE, a membrane-associated metalloprotease that is also known as ADAM17 and effects shedding in response to growth factors and Erk MAP kinase activation. p38alpha MAP kinase interacts with the cytoplasmic domain of TACE and phosphorylates it on Thr(735), which is required for TACE-mediated ectodomain shedding. Activation of TACE by p38 MAP kinase results in the release of TGF-alpha family ligands, which activate EGF receptor signaling, leading to enhanced cell proliferation. Conversely, depletion of p38alpha MAP kinase activity suppresses EGF receptor signaling and downstream Erk MAP kinase signaling, as well as autocrine EGF receptor-dependent proliferation. Autocrine EGF receptor activation through TACE-mediated ectodomain shedding intimately links inflammation and cancer progression and may play a role in stress and conditions that relate to p38 MAP kinase activation.


Asunto(s)
Proteínas ADAM/metabolismo , Proliferación Celular , Ectodermo/citología , Ectodermo/metabolismo , Receptores ErbB/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Línea Celular , Cricetinae , Cricetulus , Activación Enzimática , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 14 Activada por Mitógenos/genética , Fosfotirosina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
14.
Mol Cell ; 35(1): 26-36, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19595713

RESUMEN

Regulating TGF-beta receptor presentation provides an avenue to alter a cell's responsiveness to TGF-beta. We report that activation of the Erk MAP kinase pathway decreases the TGF-beta-induced Smad3 activation due to decreased cell surface levels of the type I receptor TbetaRI, but not the type II receptor. Inhibition of TACE activity or expression enhanced the cell surface TbetaRI levels and TGF-beta-induced Smad3 and Akt activation. Accordingly, silencing TACE expression in cancer cells enhanced the TbetaRI presentation and TGF-beta responsiveness, including the antiproliferative effect of TGF-beta, and epithelial-to-mesenchymal transition. These results establish a mechanism for downregulating TGF-beta signaling through TACE activation by the Erk MAP kinase pathway and a strategy for evasion of tumor suppression and modulation of epithelial-to-mesenchymal transition during cancer progression. The decreased growth inhibition by TGF-beta, due to elevated TACE activity, complements the growth stimulation resulting from increased release of TGF-alpha family ligands.


Asunto(s)
Proteínas ADAM/metabolismo , Microdominios de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/farmacología , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Western Blotting , Butadienos/farmacología , Células CHO , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromonas/farmacología , Cricetinae , Cricetulus , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Células HeLa , Humanos , Microdominios de Membrana/efectos de los fármacos , Microscopía Fluorescente , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Morfolinas/farmacología , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Proteína smad3/metabolismo , Transfección
15.
J Biol Chem ; 288(25): 18546-60, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23649632

RESUMEN

Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-ß/activin signaling. TGF-ß and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However, the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2, but not Smad3, is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells, in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm, mesoderm, and germ cell lineages. Additionally, induction of Cdx2 expression, as a result of decreased Smad2 expression, leads to repression of Oct4 expression, which, together with the decreased Nanog expression, accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.


Asunto(s)
Células Madre Embrionarias/metabolismo , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/metabolismo , Proteína Smad2/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Transcripción CDX2 , Diferenciación Celular/genética , Células Cultivadas , Células Madre Embrionarias/citología , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Immunoblotting , Ratones , Ratones de la Cepa 129 , Microscopía Fluorescente , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Proteína Smad2/genética , Proteína smad3/genética , Proteína smad3/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
16.
Biochim Biophys Acta ; 1830(2): 2280-96, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22959078

RESUMEN

BACKGROUND: The diversity of cell types and tissue types that originate throughout development derives from the differentiation potential of embryonic stem cells and somatic stem cells. While the former are pluripotent, and thus can give rise to a full differentiation spectrum, the latter have limited differentiation potential but drive tissue remodeling. Additionally cancer tissues also have a small population of self-renewing cells with stem cell properties. These cancer stem cells may arise through dedifferentiation from non-stem cells in cancer tissues, illustrating their plasticity, and may greatly contribute to the resistance of cancers to chemotherapies. SCOPE OF REVIEW: The capacity of the different types of stem cells for self-renewal, the establishment and maintenance of their differentiation potential, and the selection of differentiation programs are greatly defined by the interplay of signaling molecules provided by both the stem cells themselves, and their microenvironment, the niche. Here we discuss common and divergent roles of TGF-ß family signaling in the regulation of embryonic, reprogrammed pluripotent, somatic, and cancer stem cells. MAJOR CONCLUSIONS: Increasing evidence highlights the similarities between responses of normal and cancer stem cells to signaling molecules, provided or activated by their microenvironment. While TGF-ß family signaling regulates stemness of normal and cancer stem cells, its effects are diverse and depend on the cell types and physiological state of the cells. GENERAL SIGNIFICANCE: Further mechanistic studies will provide a better understanding of the roles of TGF-ß family signaling in the regulation of stem cells. These basic studies may lead to the development of a new therapeutic or prognostic strategies for the treatment of cancers. This article is part of a Special Issue entitled Biochemistry of Stem Cells.


Asunto(s)
Transducción de Señal , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos , Ratones
17.
J Cell Sci ; 125(Pt 5): 1259-73, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22399812

RESUMEN

In cancer progression, carcinoma cells gain invasive behavior through a loss of epithelial characteristics and acquisition of mesenchymal properties, a process that can lead to epithelial-mesenchymal transition (EMT). TGF-ß is a potent inducer of EMT, and increased TGF-ß signaling in cancer cells is thought to drive cancer-associated EMT. Here, we examine the physiological requirement for mTOR complex 2 (mTORC2) in cells undergoing EMT. TGF-ß rapidly induces mTORC2 kinase activity in cells undergoing EMT, and controls epithelial cell progression through EMT. By regulating EMT-associated cytoskeletal changes and gene expression, mTORC2 is required for cell migration and invasion. Furthermore, inactivation of mTORC2 prevents cancer cell dissemination in vivo. Our results suggest that the mTORC2 pathway is an essential downstream branch of TGF-ß signaling, and represents a responsive target to inhibit EMT and prevent cancer cell invasion and metastasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Transición Epitelial-Mesenquimal , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteínas Portadoras/genética , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Metaloproteinasa 9 de la Matriz/biosíntesis , Ratones , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal/fisiología , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Nat Cell Biol ; 9(9): 1000-4, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17762890

RESUMEN

During development, stem and progenitor cells gradually commit to differentiation pathways. Cell fate decisions are regulated by differentiation factors, which activate transcription programmes that specify lineage and differentiation status. Among these factors, the transforming growth factor (TGF)-beta family is important in both lineage selection and progression of differentiation of most, if not all, cell and tissue types. There is now increasing evidence that TGF-beta family proteins have the ability to redirect the differentiation of cells that either have fully differentiated or have engaged in differentiation along a particular lineage, and can thereby elicit 'transdifferentiation'. This capacity for cellular plasticity is critical for normal embryonic development, but when recapitulated in the adult it can give rise to, or contribute to, a variety of diseases. This is illustrated by the ability of TGF-beta family members to redirect epithelial cells into mesenchymal differentiation and to cause switching of mesenchymal cells from one lineage to another. Hence, various pathologies in adults may be considered diseases of abnormal development and differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Linaje de la Célula , Epitelio/crecimiento & desarrollo , Fibrosis/metabolismo , Humanos , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Morfogénesis , Metástasis de la Neoplasia , Factor de Crecimiento Transformador beta/genética
19.
Proc Natl Acad Sci U S A ; 108(19): 7820-5, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21518866

RESUMEN

Stem cell antigen (Sca)-1/Ly6A, a glycerophosphatidylinositol-linked surface protein, was found to be associated with murine stem cell- and progenitor cell-enriched populations, and also has been linked to the capacity of tumor-initiating cells. Despite these interesting associations, this protein's functional role in these processes remains largely unknown. To identify the mechanism underlying the protein's possible role in mammary tumorigenesis, Sca-1 expression was examined in Sca-1(+/EGFP) mice during carcinogenesis. Mammary tumor cells derived from these mice readily engrafted in syngeneic mice, and tumor growth was markedly inhibited on down-regulation of Sca-1 expression. The latter effect was associated with significantly elevated expression of the TGF-ß ligand growth differentiation factor-10 (GDF10), which was found to selectively activate TGF-ß receptor (TßRI/II)-dependent Smad3 phosphorylation. Overexpression of GDF10 attenuated tumor formation; conversely, silencing of GDF10 expression reversed these effects. Sca-1 attenuated GDF10-dependent TGF-ß signaling by disrupting the heterodimerization of TßRI and TßRII receptors. These findings suggest a new functional role for Sca-1 in maintaining tumorigenicity, in part by acting as a potent suppressor of TGF-ß signaling.


Asunto(s)
Antígenos Ly/genética , Antígenos Ly/metabolismo , Factor 10 de Diferenciación de Crecimiento/genética , Factor 10 de Diferenciación de Crecimiento/metabolismo , Neoplasias Mamarias Experimentales/etiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Secuencia de Bases , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/deficiencia , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína smad3/metabolismo
20.
Cell Regen ; 13(1): 11, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780677

RESUMEN

The family of secreted dimeric proteins known as the Transforming Growth Factor-ß (TGF-ß) family plays a critical role in facilitating intercellular communication within multicellular animals. A recent symposium on TGF-ß Biology - Signaling, Development, and Diseases, held on December 19-21, 2023, in Hangzhou, China, showcased some latest advances in our understanding TGF-ß biology and also served as an important forum for scientific collaboration and exchange of ideas. More than twenty presentations and discussions at the symposium delved into the intricate mechanisms of TGF-ß superfamily signaling pathways, their roles in normal development and immunity, and the pathological conditions associated with pathway dysregulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA