Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1869(2): 103-116, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29369778

RESUMEN

Cell polarity is a fundamental property used to generate asymmetry and structure in all cells. Cancer is associated with loss of cell and tissue structure. While observations made in model system such as Drosophila, identify polarity regulators as tumor suppressors that cause inappropriate cell division, studies in mammalian epithelia do not always support such a causative contribution. Our analysis of published cancer dataset shows that many polarity genes, including PARD6B, SCRIB, PRKCI, DLG1, DLG2, DLG5 and LLGL2, are frequently amplified in multiple cancers raising the possibility that mammalian epithelia may have evolved to use polarity proteins in multiple ways where they may have tumor promoting functions. In this review, we reinterpret the published results and propose a modified perspective for the role of polarity regulators in cancer biology. In addition to the traditional form of cell polarity, which is involved establishment of maintenance of normal cell structure and asymmetry, we propose that some mammalian polarity proteins also regulate subcellular polarity (intracellular asymmetry), which can improve cellular fitness to carry out functions such as proliferation, apoptosis, stress adaptation, stemness and organelle biology. Here, we define subcellular polarity and discuss evidence that supports a role for subcellular polarity in biology.


Asunto(s)
Polaridad Celular , Proliferación Celular , Transformación Celular Neoplásica/patología , Células Epiteliales/patología , Neoplasias/patología , Animales , Supervivencia Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
J Cell Sci ; 128(6): 1150-65, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25653389

RESUMEN

The cadherin-catenin adhesion complex is a key contributor to epithelial tissue stability and dynamic cell movements during development and tissue renewal. How this complex is regulated to accomplish these functions is not fully understood. We identified several phosphorylation sites in mammalian αE-catenin (also known as catenin α-1) and Drosophila α-Catenin within a flexible linker located between the middle (M)-region and the carboxy-terminal actin-binding domain. We show that this phospho-linker (P-linker) is the main phosphorylated region of α-catenin in cells and is sequentially modified at casein kinase 2 and 1 consensus sites. In Drosophila, the P-linker is required for normal α-catenin function during development and collective cell migration, although no obvious defects were found in cadherin-catenin complex assembly or adherens junction formation. In mammalian cells, non-phosphorylatable forms of α-catenin showed defects in intercellular adhesion using a mechanical dispersion assay. Epithelial sheets expressing phosphomimetic forms of α-catenin showed faster and more coordinated migrations after scratch wounding. These findings suggest that phosphorylation and dephosphorylation of the α-catenin P-linker are required for normal cadherin-catenin complex function in Drosophila and mammalian cells.


Asunto(s)
Cadherinas/metabolismo , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína I/metabolismo , Adhesión Celular , Drosophila melanogaster/metabolismo , alfa Catenina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Western Blotting , Cadherinas/genética , Quinasa de la Caseína I/genética , Quinasa de la Caseína II/genética , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Perros , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Ovario/citología , Ovario/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , alfa Catenina/química , alfa Catenina/genética
4.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36789419

RESUMEN

Ductal and acinar pancreatic organoids generated from human pluripotent stem cells (hPSCs) are promising models to study pancreatic diseases, including precursor lesions of pancreatic cancer. Genome sequencing studies have revealed that mutations in a G-protein (GNASR201C) are exclusively observed in intraductal papillary mucinous neoplasms (IPMNs), one of the most common cystic pancreatic precancerous lesions. GNASR201C cooperates with oncogenic KRASG12V/D to produce IPMN lesions in mice; however, the biological mechanisms by which oncogenic GNAS affects the ductal and acinar exocrine pancreas are not understood. In this study, we use pancreatic ductal and acinar organoids generated from human embryonic stem cells to investigate mechanisms by which GNASR201C functions. As expected, GNASR201C-induced cell proliferation in acinar organoids was PKA-dependent. Surprisingly, GNASR201C-induced cell proliferation independent of the canonical PKA signaling in short-term and stable, long-term cultures of GNAS-expressing ductal organoids and in an immortalized ductal epithelial cell line, demonstrating that GNASR201C uses PKA-dependent and independent mechanisms to induce cell proliferation in the exocrine pancreas. Co-expression of oncogenic KRASG12V and GNASR201C induced cell proliferation in ductal and acini organoids in a PKA-independent and dependent manner, respectively. Thus, we identify cell lineage-specific roles for PKA signaling driving pre-cancerous lesions and report the development of a human pancreatic ductal organoid model system to investigate mechanisms regulating GNASR201C-induced IPMNs.

5.
Cell Stem Cell ; 28(6): 1090-1104.e6, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33915081

RESUMEN

The exocrine pancreas, consisting of ducts and acini, is the site of origin of pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Our understanding of the genesis and progression of human pancreatic diseases, including PDAC, is limited because of challenges in maintaining human acinar and ductal cells in culture. Here we report induction of human pluripotent stem cells toward pancreatic ductal and acinar organoids that recapitulate properties of the neonatal exocrine pancreas. Expression of the PDAC-associated oncogene GNASR201C induces cystic growth more effectively in ductal than acinar organoids, whereas KRASG12D is more effective in modeling cancer in vivo when expressed in acinar compared with ductal organoids. KRASG12D, but not GNASR201C, induces acinar-to-ductal metaplasia-like changes in culture and in vivo. We develop a renewable source of ductal and acinar organoids for modeling exocrine development and diseases and demonstrate lineage tropism and plasticity for oncogene action in the human pancreas.


Asunto(s)
Carcinoma Ductal Pancreático , Páncreas Exocrino , Neoplasias Pancreáticas , Células Acinares , Humanos , Recién Nacido , Oncogenes , Organoides , Páncreas , Neoplasias Pancreáticas/genética , Células Madre
6.
G3 (Bethesda) ; 10(6): 1853-1867, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32265288

RESUMEN

Homologous recombination is an important mechanism for genome integrity maintenance, and several homologous recombination genes are mutated in various cancers and cancer-prone syndromes. However, since in some cases homologous recombination can lead to mutagenic outcomes, this pathway must be tightly regulated, and mitotic hyper-recombination is a hallmark of genomic instability. We performed two screens in Saccharomyces cerevisiae for genes that, when deleted, cause hyper-recombination between direct repeats. One was performed with the classical patch and replica-plating method. The other was performed with a high-throughput replica-pinning technique that was designed to detect low-frequency events. This approach allowed us to validate the high-throughput replica-pinning methodology independently of the replicative aging context in which it was developed. Furthermore, by combining the two approaches, we were able to identify and validate 35 genes whose deletion causes elevated spontaneous direct-repeat recombination. Among these are mismatch repair genes, the Sgs1-Top3-Rmi1 complex, the RNase H2 complex, genes involved in the oxidative stress response, and a number of other DNA replication, repair and recombination genes. Since several of our hits are evolutionarily conserved, and repeated elements constitute a significant fraction of mammalian genomes, our work might be relevant for understanding genome integrity maintenance in humans.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Humanos , RecQ Helicasas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
DNA Repair (Amst) ; 5(3): 336-46, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16325482

RESUMEN

Replication forks can stall spontaneously at specific sites in the genome, and upon encountering DNA lesions resulting from chemical or radiation damage. In Saccharomyces cerevisiae proteins implicated in processing of stalled replication forks include those encoded by the SGS1, TOP3, MUS81, MMS4, SLX1, SLX4, SLX5/HEX3, and SLX8 genes. We tested the roles of these genes in suppressing gross chromosomal rearrangements (GCRs), which include translocations, large interstitial deletions, and loss of a chromosome arm with de novo telomere addition. We found that mus81, mms4, slx1, slx4, slx5, and slx8 mutants all have elevated levels of spontaneous GCRs, and that SLX5 and SLX8 are particularly critical suppressors of GCRs during normal cell cycle progression. In addition to increased GCRs, deletion of SLX5 or SLX8 resulted in increased relocalization of the DNA damage checkpoint protein Ddc2 and activation of the checkpoint kinase Rad53, indicating the accumulation of spontaneous DNA damage. Surprisingly, mutants in slx5 or slx8 were not sensitive to transient replication fork stalling induced by hydroxyurea, nor were they sensitive to replication dependent double-strand breaks induced by camptothecin. This suggested that Slx8 and Slx8 played limited roles in stabilizing, restarting, or resolving transiently stalled replication forks, but were critical for preventing the accumulation of DNA damage during normal cell cycle progression.


Asunto(s)
Genoma Fúngico , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Supresión Genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Aberraciones Cromosómicas , Daño del ADN/efectos de la radiación , ADN de Hongos/genética , ADN de Hongos/efectos de la radiación , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
8.
Nat Cell Biol ; 15(3): 261-73, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23417122

RESUMEN

The linkage of adherens junctions to the actin cytoskeleton is essential for cell adhesion. The contribution of the cadherin-catenin complex to the interaction between actin and the adherens junction remains an intensely investigated subject that centres on the function of α-catenin, which binds to cadherin through ß-catenin and can bind F-actin directly or indirectly. Here, we delineate regions within Drosophila α-Catenin (α-Cat) that are important for adherens junction performance in static epithelia and dynamic morphogenetic processes. Moreover, we address whether persistent α-catenin-mediated physical linkage between cadherin and F-actin is crucial for cell adhesion and characterize the functions of α-catenin monomers and dimers at adherens junctions. Our data support the view that monomeric α-catenin acts as an essential physical linker between the cadherin-ß-catenin complex and the actin cytoskeleton, whereas α-catenin dimers are cytoplasmic and form an equilibrium with monomeric junctional α-catenin.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cadherinas/metabolismo , Adhesión Celular/fisiología , Drosophila melanogaster/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Uniones Adherentes/fisiología , Regulación Alostérica , Animales , Cadherinas/genética , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mutación/genética , Multimerización de Proteína , alfa Catenina/genética , beta Catenina/genética
9.
EMBO J ; 24(11): 2024-33, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15889139

RESUMEN

SGS1 encodes a DNA helicase whose homologues in human cells include the BLM, WRN, and RECQ4 genes, mutations in which lead to cancer-predisposition syndromes. Clustering of synthetic genetic interactions identified by large-scale genetic network analysis revealed that the genetic interaction profile of the gene RMI1 (RecQ-mediated genome instability, also known as NCE4 and YPL024W) was highly similar to that of SGS1 and TOP3, suggesting a functional relationship between Rmi1 and the Sgs1/Top3 complex. We show that Rmi1 physically interacts with Sgs1 and Top3 and is a third member of this complex. Cells lacking RMI1 activate the Rad53 checkpoint kinase, undergo a mitotic delay, and display increased relocalization of the recombination repair protein Rad52, indicating the presence of spontaneous DNA damage. Consistent with a role for RMI1 in maintaining genome integrity, rmi1Delta cells exhibit increased recombination frequency and increased frequency of gross chromosomal rearrangements. In addition, rmi1Delta strains fail to fully activate Rad53 upon exposure to DNA-damaging agents, suggesting that Rmi1 is also an important part of the Rad53-dependent DNA damage response.


Asunto(s)
ADN Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/fisiología , Proteínas de Ciclo Celular/fisiología , Quinasa de Punto de Control 2 , Daño del ADN , ADN Helicasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/fisiología , Evolución Molecular , Genes cdc , Genoma Fúngico , Complejos Multiproteicos , Mapeo de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/fisiología , Proteína Recombinante y Reparadora de ADN Rad52 , RecQ Helicasas , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA