Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 539(7630): 555-559, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27828947

RESUMEN

Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.


Asunto(s)
Cannabinoides/efectos adversos , Trastornos de la Memoria/inducido químicamente , Memoria/efectos de los fármacos , Memoria/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Cannabinoides/metabolismo , Respiración de la Célula/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transporte de Electrón/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , NADH Deshidrogenasa/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
2.
Bioessays ; 37(11): 1215-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26260530

RESUMEN

The endocannabinoid system is the target of the main psychoactive component of the plant Cannabis sativa, the Δ(9)-tetrahydrocannabinol (THC). This system is composed by the cannabinoid receptors, the endogenous ligands, and the enzymes involved in their metabolic processes, which works both centrally and peripherally to regulate a plethora of physiological functions. This review aims at explaining how the site-specific actions of the endocannabinoid system impact on memory and feeding behavior through the cannabinoid receptors 1 (CB1 R). Centrally, CB1 R is widely distributed in many brain regions, different cell types (e.g. neuronal or glial cells) and intracellular compartments (e.g. mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB1 R according to their cell-type localization (e.g. glutamatergic or GABAergic neurons). Thus, understanding the cellular and subcellular function of CB1 R will provide new insights and aid the design of new compounds in cannabinoid-based medicine. Also watch the Video Abstract.


Asunto(s)
Endocannabinoides/metabolismo , Conducta Alimentaria/fisiología , Memoria/fisiología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Apetito/fisiología , Moduladores de Receptores de Cannabinoides/farmacología , Cannabis/metabolismo , Dronabinol/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Bulbo Olfatorio/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Transducción de Señal/fisiología
3.
Am J Physiol Regul Integr Comp Physiol ; 302(1): R112-7, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22012696

RESUMEN

Rodent models for sleep restriction have good face validity when examining food intake and related regulatory metabolic hormones. However, in contrast to epidemiological studies in which sleep restriction is associated with body weight gain, sleep-restricted rats show a decrease in body weight. This difference with the human situation might be caused by the alternation between periods of sleep restriction and sleep allowance that often occur in real life. Therefore, we assessed the metabolic consequences of a chronic sleep restriction protocol that modeled working weeks with restricted sleep time alternated by weekends with sleep allowance. We hypothesized that this protocol could lead to body weight gain. Male Wistar rats were divided into three groups: sleep restriction (SR), forced activity control (FA), and home cage control (HC). SR rats were subjected to chronic sleep restriction by keeping them awake for 20 h per day in slowly rotating drums. To model the human condition, rats were subjected to a 4-wk protocol, with each week consisting of a 5-day period of sleep restriction followed by a 2-day period of sleep allowance. During the first experimental week, SR caused a clear attenuation of growth. In subsequent weeks, two important processes occurred: 1) a remarkable increase in food intake during SR days, 2) an increase in weight gain during the weekends of sleep allowance, even though food intake during those days was comparable to controls. In conclusion, our data revealed that the alternation between periods of sleep restriction and sleep allowance leads to complex changes in food intake and body weight, that prevent the weight loss normally seen in continuous sleep-restricted rats. Therefore, this "week-weekend" protocol may be a better model to study the metabolic consequences of restricted sleep.


Asunto(s)
Corticosterona/sangre , Ingestión de Alimentos/fisiología , Insulina/sangre , Leptina/sangre , Privación de Sueño/fisiopatología , Sueño/fisiología , Animales , Peso Corporal/fisiología , Metabolismo Energético/fisiología , Glucosa/metabolismo , Masculino , Modelos Animales , Ratas , Ratas Wistar , Privación de Sueño/sangre , Factores de Tiempo
4.
Neuron ; 109(9): 1513-1526.e11, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33770505

RESUMEN

Recent advances in neuroscience have positioned brain circuits as key units in controlling behavior, implying that their positive or negative modulation necessarily leads to specific behavioral outcomes. However, emerging evidence suggests that the activation or inhibition of specific brain circuits can actually produce multimodal behavioral outcomes. This study shows that activation of a receptor at different subcellular locations in the same neuronal circuit can determine distinct behaviors. Pharmacological activation of type 1 cannabinoid (CB1) receptors in the striatonigral circuit elicits both antinociception and catalepsy in mice. The decrease in nociception depends on the activation of plasma membrane-residing CB1 receptors (pmCB1), leading to the inhibition of cytosolic PKA activity and substance P release. By contrast, mitochondrial-associated CB1 receptors (mtCB1) located at the same terminals mediate cannabinoid-induced catalepsy through the decrease in intra-mitochondrial PKA-dependent cellular respiration and synaptic transmission. Thus, subcellular-specific CB1 receptor signaling within striatonigral circuits determines multimodal control of behavior.


Asunto(s)
Encéfalo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Catalepsia/inducido químicamente , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
5.
Nat Neurosci ; 17(3): 407-15, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24509429

RESUMEN

Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor-dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Ingestión de Alimentos/fisiología , Endocannabinoides/fisiología , Conducta Alimentaria/fisiología , Vías Olfatorias/fisiología , Percepción Olfatoria/fisiología , Receptor Cannabinoide CB1/metabolismo , Transmisión Sináptica/fisiología , Animales , Ingestión de Alimentos/efectos de los fármacos , Endocannabinoides/metabolismo , Retroalimentación Fisiológica/fisiología , Conducta Alimentaria/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Vías Olfatorias/efectos de los fármacos , Vías Olfatorias/metabolismo , Percepción Olfatoria/efectos de los fármacos , Receptor Cannabinoide CB1/genética , Transmisión Sináptica/efectos de los fármacos
6.
Front Behav Neurosci ; 6: 10, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22435055

RESUMEN

Glucocorticoids are known to enhance the consolidation of memory of emotionally arousing experiences by acting upon a network of interconnected brain regions. Although animal studies typically do not consider the insular cortex (IC) to be part of this network, the present findings indicate that the IC is importantly involved in regulating glucocorticoid effects on memory consolidation of emotionally arousing inhibitory avoidance training. The specific glucocorticoid receptor (GR) agonist RU 28362 (3 or 10 ng in 0.5 µl) infused bilaterally into the IC of male Sprague-Dawley rats immediately after one-trial inhibitory avoidance training dose-dependently enhanced 48 h retention performance. Moreover, training on the inhibitory avoidance task increased neuronal activity of the IC, as assessed by an increased number of cells expressing immunoreactivity for phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2). However, systemic administration of a memory-enhancing dose of corticosterone (1 mg/kg) after inhibitory avoidance training rapidly reduced the number of pERK1/2-positive cells in the IC, suggesting that glucocorticoid administration reduces overall neuronal activity of the IC. To investigate which components of the inhibitory avoidance training experience were influenced by the intra-IC glucocorticoid administration, in the last experiment rats were trained on a modified inhibitory avoidance task in which context exposure and footshock training occur on two sequential days. RU 28362 administration into the IC enhanced later retention when infused immediately after either the context or footshock training. Thus, these findings indicate that the IC mediates glucocorticoid effects on the consolidation of memory of different components of inhibitory avoidance training and suggest that the IC might be an important element of the rodent brain network involved in emotional regulation of learning and memory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA