Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Drug Metab Dispos ; 52(9): 957-965, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39038952

RESUMEN

The organic anion transporting polypeptide (OATP) 2B1 is considered an emerging drug transporter that is found expressed in pharmacokinetically relevant organs such as the liver, small intestine, and kidney. Despite its interaction with various substrate drugs, the understanding of its in vivo relevance is still limited. In this study, we first validated the interaction of atorvastatin with rat OATP2B1 using transiently transfected HeLa cells. Moreover, we characterized our rSlco2b1-knockout and SLCO2B1-knockin rats for mRNA, protein expression, and localization of OATP2B1 in the liver, small intestine, and kidney. The transporter showed the highest expression in the liver followed by the small intestine. In humanized rats, human OATP2B1 is localized on the sinusoidal membrane of hepatocytes. In enterocytes of wild-type and humanized rats, the transporter was detected in the luminal membrane with the vast majority being localized subapical. Subsequently, we assessed atorvastatin pharmacokinetics in male wild-type, rSlco2b1-knockout, and SLCO2B1-knockin rats after a single-dose administration (orally and intravenously). Investigating the contribution of rat OATP2B1 or human OATP2B1 to oral atorvastatin pharmacokinetics revealed no differences in concentration-time profiles or pharmacokinetic parameters. However, when comparing the pharmacokinetics of atorvastatin after intravenous administration in SLCO2B1-humanized rats and knockout animals, notable differences were observed. In particular, the systemic exposure (area under the curve) decreased by approximately 40% in humanized animals, whereas the clearance was 57% higher in animals expressing human OATP2B1. These findings indicate that human OATP2B1 influences pharmacokinetics of atorvastatin after intravenous administration, most likely by contributing to the hepatic uptake. SIGNIFICANCE STATEMENT: Wild-type, rSlco2b1-knockout, and SLCO2B1-humanized Wistar rats were characterized for the expression of rat and human SLCO2B1/OATP2B1. Pharmacokinetic studies of atorvastatin over 24 hours were conducted in male wild-type, rSlco2b1-knockout, and SLCO2B1-humanized rats. After a single-dose intravenous administration, a lower systemic exposure and an increase in clearance were observed in SLCO2B1-humanized rats compared with knockout animals indicating a contribution of OATP2B1 to the hepatic clearance.


Asunto(s)
Atorvastatina , Hígado , Transportadores de Anión Orgánico , Animales , Atorvastatina/farmacocinética , Atorvastatina/administración & dosificación , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Humanos , Masculino , Ratas , Hígado/metabolismo , Células HeLa , Ratas Transgénicas , Intestino Delgado/metabolismo , Técnicas de Inactivación de Genes/métodos , Riñón/metabolismo , Técnicas de Sustitución del Gen/métodos , Administración Oral , Administración Intravenosa , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Hepatocitos/metabolismo , Distribución Tisular
2.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917124

RESUMEN

There is an increasing interest in cationic polymers as important constituents of non-viral gene delivery vectors. In the present study, we developed a versatile synthetic route for the production of covalent polymeric conjugates consisting of water-soluble depolymerized chitosan (dCS; MW 6-9 kDa) and low molecular weight polyethylenimine (PEI; 2.5 kDa linear, 1.8 kDa branched). dCS-PEI derivatives were evaluated based on their physicochemical properties, including purity, covalent bonding, solubility in aqueous media, ability for DNA condensation, and colloidal stability of the resulting polyplexes. They were complexed with non-integrating DNA vectors coding for reporter genes by simple admixing and assessed in vitro using liver-derived HuH-7 cells for their transfection efficiency and cytotoxicity. Using a rational screening cascade, a lead compound was selected (dCS-Suc-LPEI-14) displaying the best balance of biocompatibility, cytotoxicity, and transfection efficiency. Scale-up and in vivo evaluation in wild-type mice allowed for a direct comparison with a commercially available non-viral delivery vector (in vivo-jetPEI). Hepatic expression of the reporter gene luciferase resulted in liver-specific bioluminescence, upon intrabiliary infusion of the chitosan-based polyplexes, which exceeded the signal of the in vivo jetPEI reference formulation by a factor of 10. We conclude that the novel chitosan-derivative dCS-Suc-LPEI-14 shows promise and potential as an efficient polymeric conjugate for non-viral in vivo gene therapy.


Asunto(s)
Quitosano/química , Técnicas de Transferencia de Gen , Polietileneimina/química , Transfección , Animales , Línea Celular Tumoral , Supervivencia Celular , Fenómenos Químicos , Técnicas de Química Sintética , Coloides/química , ADN/química , Expresión Génica , Genes Reporteros , Vectores Genéticos , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Transfección/métodos
3.
Small ; 16(31): e2000746, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32567135

RESUMEN

Metal-based nanoparticles are clinically used for diagnostic and therapeutic applications. After parenteral administration, they will distribute throughout different organs. Quantification of their distribution within tissues in the 3D space, however, remains a challenge owing to the small particle diameter. In this study, synchrotron radiation-based hard X-ray tomography (SRµCT) in absorption and phase contrast modes is evaluated for the localization of superparamagnetic iron oxide nanoparticles (SPIONs) in soft tissues based on their electron density and X-ray attenuation. Biodistribution of SPIONs is studied using zebrafish embryos as a vertebrate screening model. This label-free approach gives rise to an isotropic, 3D, direct space visualization of the entire 2.5 mm-long animal with a spatial resolution of around 2 µm. High resolution image stacks are available on a dedicated internet page (http://zebrafish.pharma-te.ch). X-ray tomography is combined with physico-chemical characterization and cellular uptake studies to confirm the safety and effectiveness of protective SPION coatings. It is demonstrated that SRµCT provides unprecedented insights into the zebrafish embryo anatomy and tissue distribution of label-free metal oxide nanoparticles.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas del Metal , Animales , Óxidos , Distribución Tisular , Tomografía Computarizada por Rayos X , Pez Cebra
4.
Pharm Res ; 37(3): 68, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32166417

RESUMEN

A manuscript version without peer-review revisions was mistakenly processed and published.

5.
Pharm Res ; 37(2): 23, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900680

RESUMEN

Significant efforts are made to characterize molecular liabilities and degradation of the drug substance (DS) and drug product (DP) during various product life-cycle stages. The in vivo fate of a therapeutic protein is usually only considered in terms of pharmacokinetics (PKs) and pharmacodynamics (PDs). However, the environment in the human body differs substantially from that of the matrix (formulation) of the DP and may impact on the stability of an injected therapeutic protein. Stabilizing excipients used in protein formulations are expected to undergo more rapid distribution and dissociation in vivo, compared to a protein as a highly charged macromolecule. Thus, in vivo stability may significantly differ from shelf-life stability. In vivo degradation of the therapeutic protein may alter efficacy and/or safety characteristics such as immunogenicity. Studying the stability of a therapeutic protein in the intended body compartment can de-risk drug development in early stages of development by improving the selection of better clinical lead molecules. This review assesses the considerations when aiming to evaluate the in vivo fate of a therapeutic protein by comparing the physiology of relevant human body compartments and assessing their potential implications on the stability of a therapeutic protein. Moreover, we discuss the limitations of current experimental approaches mimicking physiologic conditions, depending on the desired route of administration, such as intravenous (IV), subcutaneous (SC), intravitreal (IVT), or intrathecal (IT) administration(s). New models more closely mimicking the relevant physiologic environment and updated analytical methods are required to understand the in vivo fate of therapeutic proteins.


Asunto(s)
Preparaciones Farmacéuticas/química , Proteínas/química , Animales , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Excipientes/química , Humanos
6.
Nanomedicine ; 17: 82-93, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30659929

RESUMEN

Macrophage recognition of nanoparticles is highly influenced by particle size and surface modification. Due to the lack of appropriate in vivo screening models, it is still challenging and time-consuming to characterize and optimize nanomedicines regarding this undesired clearance mechanism. Therefore, we validate zebrafish embryos as an emerging vertebrate screening tool to assess the macrophage sequestration of surface modified particulate formulations with varying particle size under realistic biological conditions. Liposomes with different PEG molecular weights (PEG350-PEG5000) at different PEG densities (3.0-10.0 mol%) and particle sizes between 60 and 120 nm were used as a well-established reference system showing various degrees of macrophage uptake. The results of in vitro experiments, zebrafish embryos, and in vivo rodent biodistribution studies were consistent, highlighting the validity of the newly introduced zebrafish macrophage clearance model. We hereby present a strategy for efficient, systematic and rapid nanomedicine optimization in order to facilitate the preclinical development of nanotherapeutics.


Asunto(s)
Liposomas/metabolismo , Macrófagos/metabolismo , Polietilenglicoles/metabolismo , Animales , Transporte Biológico , Femenino , Células Hep G2 , Humanos , Liposomas/química , Liposomas/farmacocinética , Modelos Animales , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Ratas Wistar , Distribución Tisular , Pez Cebra/embriología , Pez Cebra/metabolismo
7.
Biophys J ; 114(2): 343-354, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401432

RESUMEN

Cardiac ryanodine receptors (RyR2s) are Ca2+ release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca2+ release. The distribution of these Ca2+ release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca2+ release. RyR2 clusters located in the interior of cardiomyocytes are arranged in highly ordered arrays. However, little is known about the distribution and function of RyR2 clusters in the periphery of cardiomyocytes. Here, we used a knock-in mouse model expressing a green fluorescence protein (GFP)-tagged RyR2 to localize RyR2 clusters in live ventricular myocytes by virtue of their GFP fluorescence. Confocal imaging and total internal reflection fluorescence microscopy was employed to determine and compare the distribution of GFP-RyR2 in the interior and periphery of isolated live ventricular myocytes and in intact hearts. We found tightly ordered arrays of GFP-RyR2 clusters in the interior, as previously described. In contrast, irregular distribution of GFP-RyR2 clusters was observed in the periphery. Time-lapse total internal reflection fluorescence imaging revealed dynamic movements of GFP-RyR2 clusters in the periphery, which were affected by external Ca2+ and RyR2 activator (caffeine) and inhibitor (tetracaine), but little detectable movement of GFP-RyR2 clusters in the interior. Furthermore, simultaneous Ca2+- and GFP-imaging demonstrated that peripheral RyR2 clusters with an irregular distribution pattern are functional with a Ca2+ release profile similar to that in the interior. These results indicate that the distribution of RyR2 clusters in the periphery of live ventricular myocytes is irregular and dynamic, which is different from that of RyR2 clusters in the interior.


Asunto(s)
Ventrículos Cardíacos/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Supervivencia Celular , Ratones , Transporte de Proteínas
8.
Eur J Immunol ; 45(2): 383-95, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25378230

RESUMEN

Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway.


Asunto(s)
Presentación de Antígeno , Reactividad Cruzada , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Fagocitosis , Animales , Catepsinas/inmunología , Catepsinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Endocitosis , Endosomas/inmunología , Endosomas/metabolismo , Epítopos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Lisosomas/inmunología , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Complejos Multienzimáticos/inmunología , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/inmunología , NADH NADPH Oxidorreductasas/metabolismo , Ovalbúmina/inmunología , Ovalbúmina/farmacología , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo
9.
Heliyon ; 10(4): e26025, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384517

RESUMEN

The mechanism governing pharmaceutical tablet disintegration is far from fully understood. Despite the importance of controlling a formulation's disintegration process to maximize the active pharmaceutical ingredient's bioavailability and ensure predictable and consistent release profiles, the current understanding of the process is based on indirect or superficial measurements. Formulation science could, therefore, additionally deepen the understanding of the fundamental physical principles governing disintegration based on direct observations of the process. We aim to help bridge the gap by generating a series of time-resolved X-ray micro-computed tomography (µCT) images capturing volumetric images of a broad range of mini-tablet formulations undergoing disintegration. Automated image segmentation was a prerequisite to overcoming the challenges of analyzing multiple time series of heterogeneous tomographic images at high magnification. We devised and trained a convolutional neural network (CNN) based on the U-Net architecture for autonomous, rapid, and consistent image segmentation. We created our own µCT data reconstruction pipeline and parameterized it to deliver image quality optimal for our CNN-based segmentation. Our approach enabled us to visualize the internal microstructures of the tablets during disintegration and to extract parameters of disintegration kinetics from the time-resolved data. We determine by factor analysis the influence of the different formulation components on the disintegration process in terms of both qualitative and quantitative experimental responses. We relate our findings to known formulation component properties and established experimental results. Our direct imaging approach, enabled by deep learning-based image processing, delivers new insights into the disintegration mechanism of pharmaceutical tablets.

10.
Eur J Pharm Sci ; 203: 106898, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260517

RESUMEN

Lipid nanoparticles (LNPs) are successfully used for RNA-based gene delivery. In the context of gene replacement therapies, however, delivery of DNA expression plasmids using LNPs as a non-viral vector could be a promising strategy for the induction of longer-lasting effects. Therefore, DNA expression plasmids (3 to 4 kbp) coding for fluorescent markers or luciferase were combined with LNPs. Different clinically used ionizable lipids (DLin-MC3-DMA, SM-102, and ALC-0315) were tested to compare their influence on DNA plasmid delivery. DNA-LNPs were characterized with respect to their colloidal properties (size, polydispersity, ζ-potential, morphology), in vitro performance (cellular uptake, DNA delivery, and gene expression), and in vivo characteristics (biodistribution and luciferase gene expression). At an optimized N/P ratio of 6, spherical, small and monodisperse particles with anionic ζ-potential were obtained. Efficient transgene expression was achieved with a minimum amount of 1 pg DNA per initially plated cells. Zebrafish studies allowed selection of DNA-LNPs, which demonstrated prolonged blood circulation, avoidance of macrophage clearance, and vascular extravasation. Our comparative study demonstrates a high impact of the ionizable lipid type on DNA-LNP performance. Superior transfection efficiency of DNA-LNPs containing the ionizable lipid ALC-0315 was confirmed in wildtype mice.

11.
J Control Release ; 371: 85-100, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782063

RESUMEN

Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear. In this study, using the zebrafish model (Danio rerio), we investigated the fate of liposome-incorporated lipid fluorophore conjugates (LFCs) after intravenous (IV) administration. LFCs having a bilayer mismatch and relatively polar fluorophore revealed counter-predictive outcomes for Caelyx/Doxil (clearance vs. circulating) and AmBisome-like liposomes (scavenger endothelial cell vs. macrophage uptake). Findings on LFC (mis)match for Caelyx/Doxil-like liposomes were supported by translational intravital imaging studies in mice. Importantly, contradicting observations suggest to originate from LFC dissociation in vivo, which was investigated by Asymmetric Flow Field-Flow Fractionation (AF4) upon liposome-serum incubation in situ. Our data suggests that LFCs matching with the liposome bilayer composition - that did not dissociate upon serum incubation - revealed improved predictive outcomes for liposome biodistribution profiles. Altogether, this study highlights the critical importance of fatty acid tail length and headgroup moiety when selecting lipid conjugates for lipid-based nanomedicine.


Asunto(s)
Lípidos , Liposomas , Nanomedicina , Pez Cebra , Animales , Nanomedicina/métodos , Lípidos/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Ratones , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Doxorrubicina/análogos & derivados
12.
J Control Release ; 362: 667-691, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666302

RESUMEN

Polyethlyenimine (PEI) was introduced 1995 as a cationic polymer for nucleic acid delivery. PEI and its derivatives are extensively used in basic research and as reference formulations in the field of polymer-based gene delivery. Despite its widespread use, the number of clinical applications to date is limited. Thus, this review aims to consolidate the past applications of PEI in DNA delivery, elucidate the obstacles that hinder its transition to clinical use, and highlight potential prospects for novel iterations of PEI derivatives. The present review article is divided into three sections. The first section examines the mechanism of action employed by PEI, examining fundamental aspects of cellular delivery including uptake mechanisms, release from endosomes, and transport into the cell nucleus, along with potential strategies for enhancing these delivery phases. Moreover, an in-depth analysis is conducted concerning the mechanism underlying cellular toxicity, accompanied with approaches to overcome this major challenge. The second part is devoted to the in vivo performance of PEI and its application in various therapeutic indications. While systemic administration has proven to be challenging, alternative localized delivery routes hold promise, such as treatment of solid tumors, application as a vaccine, or serving as a therapeutic agent for pulmonary delivery. In the last section, the outcome of completed and ongoing clinical trials is summarized. Finally, an expert opinion is provided on the potential of PEI and its future applications. PEI-based formulations for nucleic acid delivery have a promising potential, it will be an important task for the years to come to introduce innovations that address PEI-associated shortcomings by introducing well-designed PEI formulations in combination with an appropriate route of administration.

13.
Commun Biol ; 6(1): 478, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137966

RESUMEN

Extracellular vesicles (EVs) are highly interesting for the design of next-generation therapeutics. However, their preparation methods face challenges in standardization, yield, and reproducibility. Here, we describe a highly efficient and reproducible EV preparation method for monodisperse nano plasma membrane vesicles (nPMVs), which yields 10 to 100 times more particles per cell and hour than conventional EV preparation methods. nPMVs are produced by homogenizing giant plasma membrane vesicles following cell membrane blebbing and apoptotic body secretion induced by chemical stressors. nPMVs showed no significant differences compared to native EVs from the same cell line in cryo-TEM analysis, in vitro cellular interactions, and in vivo biodistribution studies in zebrafish larvae. Proteomics and lipidomics, on the other hand, suggested substantial differences consistent with the divergent origin of these two EV types and indicated that nPMVs primarily derive from apoptotic extracellular vesicles. nPMVs may provide an attractive source for developing EV-based pharmaceutical therapeutics.


Asunto(s)
Vesículas Extracelulares , Pez Cebra , Animales , Reproducibilidad de los Resultados , Distribución Tisular , Vesículas Extracelulares/metabolismo , Membrana Celular/metabolismo
14.
Macromol Biosci ; 23(1): e2200314, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36200651

RESUMEN

The delivery of nucleic acids relies on vectors that condense and encapsulate their cargo. Especially nonviral gene delivery systems are of increasing interest. However, low transgene expression levels and limited tolerability of these systems remain a challenge. The improvement of nucleic acid delivery using depolymerized chitosan-polyethylenimine DNA complexes (dCS-PEI/DNA) is investigated. The secore complexes are further combined with chitosan-based shells and functionalized with polyethylene glycol (PEG) and cell penetrating peptides. This modular approach allows to evaluate the effect of functional shell components on physicochemical particle characteristics and biological effects. The optimized ternary complex combines a core-dCS-linear PEI/DNA complex with a shell consisting of dCS-PEG-COOH, which results in improved nucleic acid encapsulation, cellular uptake and transfection potency in human hepatoma HuH-7cells and murine primary hepatocytes. Effects on transgene expression are confirmed in wild-type mice following retrograde intrabiliary infusion. After administration of only 100 ng complexed DNA, ternary complexes induced a high reporter gene signal for three days. It is concluded that ternary coreshell structured nanoparticles comprising functionalized chitosan can be used for in vitro andin vivo gene delivery.


Asunto(s)
Quitosano , Nanopartículas , Ratones , Humanos , Animales , Quitosano/farmacología , Quitosano/química , Polietileneimina/farmacología , Polietileneimina/química , Transfección , Técnicas de Transferencia de Gen , ADN/genética , Nanopartículas/química , Polietilenglicoles/farmacología , Polietilenglicoles/química
15.
Drug Metab Rev ; 44(3): 253-65, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22788578

RESUMEN

Resveratrol is a naturally occurring polyphenol that is often used as a food supplement. Many positive health effects, including cardio protection, tumor suppression, and immune modulation, are associated with the intake of resveratrol. Resveratrol is well tolerated in healthy subjects without any comedication. However, supplemental doses of resveratrol in the range of 1 g/day or above by far exceed the natural intake through food. Whether resveratrol-drug interactions can be harmful in patients taking additional medications remains unknown. Recent in vivo studies and clinical trials indicate a possible drug-drug interaction potential using high-dosage formulations. In this review, the known in vitro and in vivo effects of resveratrol on various cytochrome P450 (CYP) isoenzymes are summarized. They are discussed in relation to clinically relevant plasma concentrations in humans. We conclude that resveratrol may lead to interactions with various CYPs, especially when taken in high doses. Aside from systemic CYP inhibition, intestinal interactions must also be considered. They can potentially lead to reduced first-pass metabolism, resulting in higher systemic exposure to certain coadministrated CYP substrates. Therefore, patients who ingest high doses of this food supplement combined with additional medications may be at risk of experiencing clinically relevant drug-drug interactions.


Asunto(s)
Cardiotónicos/efectos adversos , Suplementos Dietéticos/efectos adversos , Interacciones Alimento-Droga , Estilbenos/efectos adversos , Animales , Anticarcinógenos/efectos adversos , Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/efectos adversos , Humanos , Factores Inmunológicos/efectos adversos , Resveratrol , Vasodilatadores/efectos adversos , Vino/efectos adversos , Vino/análisis
16.
Eur J Pharm Biopharm ; 172: 134-143, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35181492

RESUMEN

The essential homeostatic process of dead cell clearance (efferocytosis) is used by viruses in an act of apoptotic mimicry. Among others, virions leverage phosphatidylserine (PS) as an essential "eat me" signal in viral envelopes to increase their infectivity. In a virus-inspired biomimetic approach, we demonstrate that PS can be incorporated into non-viral lipid nanoparticle (LNP) pDNA/mRNA constructs to enhance cellular transfection. The inclusion of the bioactive PS leads to an increased ability of LNPs to deliver nucleic acids in vitro to cultured HuH-7 hepatocellular carcinoma cells resulting in a 6-fold enhanced expression of a transgene. Optimal PS concentrations are in the range of 2.5 to 5% of total lipids. PS-decorated mRNA-LNPs show a 5.2-fold enhancement of in vivo transfection efficiency as compared to mRNA-LNPs devoid of PS. Effects were less pronounced for PS-decorated pDNA-LNPs (3.2-fold increase). Incorporation of small, defined amounts of PS into gene delivery vectors opens new avenues for efficient gene therapy and can be easily extended to other therapeutic systems.


Asunto(s)
Nanopartículas , Fosfatidilserinas , Técnicas de Transferencia de Gen , Liposomas , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Sci Rep ; 12(1): 9474, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35676405

RESUMEN

Removal of particulate materials that would otherwise cumulate within the airspace and hinder the gas exchange is one of the central processes of maintaining lung homeostasis. While the importance of the particle uptake by alveolar macrophages and their expulsion via the airways mucociliary escalator is well established, very little is known about the alternative route for removing the particles via direct crossing the lung epithelium for transfer into the pulmonary lymph and bloodstream. This study dissected sequential mechanisms involved in nanoparticle transcytosis through the alveolar epithelial cell layer. By a combination of live cell, super resolution, and electron microscopy and RNA interference study, we have dissected temporal steps of nanoparticle transcytosis through alveolar epithelium. Our study revealed that caveolin is essential for the firm adhesion of the silica nanoparticle agglomerates to the apical membrane and their subsequent rapid internalization with the help of macropinocytic elements C-terminal-binding protein1 and Rabankyrin-5 but not dynamin. Actin, but not microtubules, played a major role in nanoparticle uptake and subsequent transportation. The compartments with nanoparticles were tethered to trans-Golgi network to be jointly transported along actin stress fibers across the cytoplasm, employing a myosin-dependent mechanism. The trans-Golgi nanoparticle transport machinery was positive to Rab6A, a marker linked to vesicle exocytosis. Exocytosis was primarily occurring at the basolateral plane of the alveolar epithelial cells. The high-proficiency novel caveolin and Rabankyrin-5 associated uptake and transcellular transport of nanoparticles across the AEC barrier supports its importance in clearance of amorphous silica and other types of non-inflammatory nanoparticles that are rapidly removed from the lungs following their inhalation.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Actinas/metabolismo , Caveolina 1/metabolismo , Nanopartículas/metabolismo , Dióxido de Silicio/metabolismo , Transcitosis
18.
Sci Rep ; 10(1): 17295, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057103

RESUMEN

Buprenorphine is a frequently used analgetic agent in veterinary medicine. A major drawback, however, is the short duration of action requiring several daily administrations. We therefore designed a poly-lactic-co-glycolic acid (PLGA) based microparticulate drug formulation for sustained parenteral drug release. Particles were designed to allow for a fast onset of action and a duration of the analgesic effect of at least two days in laboratory mice. Microparticles were produced using a solvent evaporation technique. Release rate was dependent on polymer type and particle size. Spherical particles used for subsequent animal studies had a mean size of 50 µm and contained 4.5% of buprenorphine. Drug release was characterized by an initial burst release of 30% followed by complete release over seven days. In vivo pharmacokinetic experiments in female C57BL/6 J mice confirmed prolonged exposure in plasma and brain tissue and correlated with the pharmacological effect in the hot plate assay or after minor abdominal surgery. No adverse side effects with respect to food and water intake, body weight, local tolerability, or nesting behavior were observed. Our formulation is an attractive alternative to established immediate release formulations. A use for prolonged pain management in laboratory animals is proposed.


Asunto(s)
Analgésicos , Buprenorfina , Composición de Medicamentos/métodos , Composición de Medicamentos/veterinaria , Diseño de Fármacos , Manejo del Dolor/veterinaria , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Preparaciones de Acción Retardada , Liberación de Fármacos , Femenino , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Factores de Tiempo
19.
Eur J Pharm Sci ; 143: 105207, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31870814

RESUMEN

In this study, we reported doxorubicin (DOX)-encapsulated nanoparticles (NPs) formulated with biocompatible and biodegradable poly (lactic-co-glycolic acid) (PLGA) and modified with a 13-amino acid peptide (S3) against sodium/potassium (Na+/K+)-ATPase pump alpha subunit to investigate its potential as antitumor agent. The morphological properties and size dispersity of the prepared nanoparticles were evaluated using scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency and in vitro release during 7 days were evaluated. Comparative in vitro cytotoxicity experiments demonstrated that the S3-conjugated nanoparticles (S3-PLGA-DOX NPs) had higher antiproliferative activity. Flow cytometry analysis confirmed the enhanced cellular uptake of S3-PLGA-DOX NPs in comparison with PLGA-DOX. In vivo study in 4T1 tumor-bearing BALB/C mice revealed that the S3-functionalized DOX-loaded NPs improved antitumor activity and survival rate of 4T1 tumor bearing mice. In this regard, conjugation of S3 peptide to the surface of DOX-loaded PLGA NPs provides site-specific delivery of DOX, inhibits 4T1 tumor growth in vivo and significantly decreases systemic toxicity. The obtained results suggested that the new (Na+/K+)-ATPase pump-targeted PLGA NPs as a target-selective delivery system for DOX has great potential for the treatment of breast cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Nanopartículas/administración & dosificación , Péptidos/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Liberación de Fármacos , Femenino , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos BALB C , Nanopartículas/química , Péptidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Carga Tumoral/efectos de los fármacos
20.
Eur J Pharm Biopharm ; 152: 193-201, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32371154

RESUMEN

In recent years, the stability of biotherapeutics in vivo has received increasing attention. Assessing the stability of biotherapeutics in serum may support the selection of adequate molecule candidates. In our study, we compared the physical stability of 8 different monoclonal antibodies (mAbs) in phosphate-buffered saline (PBS) and human serum. mAbs were Alexa Fluor 488-labeled and characterized with respect to fragmentation, aggregation, and proteinaceous particle formation. Samples were analyzed using size-exclusion chromatography, light obscuration, and flow imaging. In addition, novel methods such as flow cytometry and fluorescence microscopy were applied. mAbs were selected based on their hydrophobicity and isoelectric point. All mAbs studied were inherently less stable in human serum as compared to PBS. Particle size and particle counts increased in serum over time. Interestingly, certain mAbs showed significant levels of fragmentation in serum but not in PBS. We conclude that PBS cannot replicate the physical stability measured in serum. The stability of labeled mAbs in human serum did not correlate with their hydrophobicity and isoelectric point . Serum stability significantly differed amongst the tested mAbs.


Asunto(s)
Anticuerpos Monoclonales/química , Fosfatos/química , Solución Salina/química , Suero/química , Cromatografía en Gel/métodos , Citometría de Flujo/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Fluorescente/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA