Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; 53(9): e2250024, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37366246

RESUMEN

mAbs have been instrumental for targeted cancer therapies. However, their relatively large size and physicochemical properties result in a heterogenous distribution in the tumor microenvironment, usually restricted to the first cell layers surrounding blood vessels, and a limited ability to penetrate the brain. Nanobodies are tenfold smaller, resulting in a deeper tumor penetration and the ability to reach cells in poorly perfused tumor areas. Nanobodies are rapidly cleared from the circulation, which generates a fast target-to-background contrast that is ideally suited for molecular imaging purposes but may be less optimal for therapy. To circumvent this problem, nanobodies have been formatted to noncovalently bind albumin, increasing their serum half-life without majorly increasing their size. Finally, nanobodies have shown superior qualities to infiltrate brain tumors as compared to mAbs. In this review, we discuss why these features make nanobodies prime candidates for targeted therapy of cancer.


Asunto(s)
Neoplasias Encefálicas , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/uso terapéutico , Anticuerpos Monoclonales , Microambiente Tumoral
2.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891821

RESUMEN

CAR-T cell therapy is at the forefront of next-generation multiple myeloma (MM) management, with two B-cell maturation antigen (BCMA)-targeted products recently approved. However, these products are incapable of breaking the infamous pattern of patient relapse. Two contributing factors are the use of BCMA as a target molecule and the artificial scFv format that is responsible for antigen recognition. Tackling both points of improvement in the present study, we used previously characterized VHHs that specifically target the idiotype of murine 5T33 MM cells. This idiotype represents one of the most promising yet challenging MM target antigens, as it is highly cancer- but also patient-specific. These VHHs were incorporated into VHH-based CAR modules, the format of which has advantages compared to scFv-based CARs. This allowed a side-by-side comparison of the influence of the targeting domain on T cell activation. Surprisingly, VHHs previously selected as lead compounds for targeted MM radiotherapy are not the best (CAR-) T cell activators. Moreover, the majority of the evaluated VHHs are incapable of inducing any T cell activation. As such, we highlight the importance of specific VHH selection, depending on its intended use, and thereby raise an important shortcoming of current common CAR development approaches.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Humanos , Animales , Inmunoterapia Adoptiva/métodos , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Anticuerpos Antiidiotipos/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Antígeno de Maduración de Linfocitos B/inmunología , Antígeno de Maduración de Linfocitos B/metabolismo , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/química , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Activación de Linfocitos/inmunología
3.
J Nanobiotechnology ; 21(1): 371, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821897

RESUMEN

BACKGROUND: The opening of pannexin1 channels is considered as a key event in inflammation. Pannexin1 channel-mediated release of adenosine triphosphate triggers inflammasome signaling and activation of immune cells. By doing so, pannexin1 channels play an important role in several inflammatory diseases. Although pannexin1 channel inhibition could represent a novel clinical strategy for treatment of inflammatory disorders, therapeutic pannexin1 channel targeting is impeded by the lack of specific, potent and/or in vivo-applicable inhibitors. The goal of this study is to generate nanobody-based inhibitors of pannexin1 channels. RESULTS: Pannexin1-targeting nanobodies were developed as potential new pannexin1 channel inhibitors. We identified 3 cross-reactive nanobodies that showed affinity for both murine and human pannexin1 proteins. Flow cytometry experiments revealed binding capacities in the nanomolar range. Moreover, the pannexin1-targeting nanobodies were found to block pannexin1 channel-mediated release of adenosine triphosphate. The pannexin1-targeting nanobodies were also demonstrated to display anti-inflammatory effects in vitro through reduction of interleukin 1 beta amounts. This anti-inflammatory outcome was reproduced in vivo using a human-relevant mouse model of acute liver disease relying on acetaminophen overdosing. More specifically, the pannexin1-targeting nanobodies lowered serum levels of inflammatory cytokines and diminished liver damage. These effects were linked with alteration of the expression of several NLRP3 inflammasome components. CONCLUSIONS: This study introduced for the first time specific, potent and in vivo-applicable nanobody-based inhibitors of pannexin1 channels. As demonstrated for the case of liver disease, the pannexin1-targeting nanobodies hold great promise as anti-inflammatory agents, yet this should be further tested for extrahepatic inflammatory disorders. Moreover, the pannexin1-targeting nanobodies represent novel tools for fundamental research regarding the role of pannexin1 channels in pathological and physiological processes.


Asunto(s)
Hepatopatías , Anticuerpos de Dominio Único , Animales , Humanos , Ratones , Adenosina Trifosfato , Antiinflamatorios , Inflamasomas , Inflamación/tratamiento farmacológico , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico
4.
Med Res Rev ; 42(1): 306-342, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34028069

RESUMEN

Immuno-oncology has been at the forefront of cancer treatment in recent decades. In particular immune checkpoint and chimeric antigen receptor (CAR)-T cell therapy have achieved spectacular results. Over the years, CAR-T cell development has followed a steady evolutionary path, focusing on increasing T cell potency and sustainability, which has given rise to different CAR generations. However, there was less focus on the mode of interaction between the CAR-T cell and the cancer cell; more specifically on the targeting moiety used in the CAR and its specific properties. Recently, the importance of optimizing this domain has been recognized and the possibilities have been exploited. Over the last 10 years-in addition to the classical scFv-based CARs-single domain CARs, natural receptor-ligand CARs, universal CARs and CARs targeting more than one antigen have emerged. In addition, the specific parameters of the targeting domain and their influence on T cell activation are being examined. In this review, we concisely present the history of CAR-T cell therapy, and then expand on various developments in the CAR ectodomain. We discuss different formats, each with their own advantages and disadvantages, as well as the developments in affinity tuning, avidity effects, epitope location, and influence of the extracellular spacer.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Linfocitos T
5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430166

RESUMEN

Ovarian cancer ranks fifth in cancer-related deaths among women. Since ovarian cancer patients are often asymptomatic, most patients are diagnosed only at an advanced stage of disease. This results in a 5-year survival rate below 50%, which is in strong contrast to a survival rate as high as 94% if detected and treated at an early stage. Monitoring serum biomarkers offers new possibilities to diagnose ovarian cancer at an early stage. In this study, nanobodies targeting the ovarian cancer biomarkers human epididymis protein 4 (HE4), secretory leukocyte protease inhibitor (SLPI), and progranulin (PGRN) were evaluated regarding their expression levels in bacterial systems, epitope binning, and antigen-binding affinity by enzyme-linked immunosorbent assay and surface plasmon resonance. The selected nanobodies possess strong binding affinities for their cognate antigens (KD~0.1-10 nM) and therefore have a pronounced potential to detect ovarian cancer at an early stage. Moreover, it is of utmost importance that the limits of detection (LOD) for these biomarkers are in the pM range, implying high specificity and sensitivity, as demonstrated by values in human serum of 37 pM for HE4, 163 pM for SLPI, and 195 pM for PGRN. These nanobody candidates could thus pave the way towards multiplexed biosensors.


Asunto(s)
Neoplasias Ováricas , Anticuerpos de Dominio Único , Humanos , Femenino , Detección Precoz del Cáncer , Carcinoma Epitelial de Ovario , Neoplasias Ováricas/diagnóstico , Biomarcadores de Tumor , Progranulinas
6.
Int J Mol Sci ; 22(7)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800706

RESUMEN

Gap junctions and connexin hemichannels mediate intercellular and extracellular communication, respectively. While gap junctions are seen as the "good guys" by controlling homeostasis, connexin hemichannels are considered as the "bad guys", as their activation is associated with the onset and dissemination of disease. Open connexin hemichannels indeed mediate the transport of messengers between the cytosol and extracellular environment and, by doing so, fuel inflammation and cell death in a plethora of diseases. The present mini-review discusses the mechanisms involved in the activation of connexin hemichannels during pathology.


Asunto(s)
Membrana Celular/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/fisiología , Inflamación/metabolismo , Animales , Muerte Celular , Conexina 43/metabolismo , Citosol/metabolismo , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Moléculas de Patrón Molecular Asociado a Patógenos , Péptidos/química , Fosforilación , Estrés Mecánico
7.
Diabetologia ; 63(4): 825-836, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31873789

RESUMEN

AIMS/HYPOTHESIS: Type 1 diabetes is characterised by a progressive decline in beta cell mass. This is also observed following implantation of pancreatic islet allografts, but there is no reliable information regarding the time course of beta cell loss. This is due to the limited availability of non-invasive pancreatic islet imaging techniques. We have previously described that dipeptidyl peptidase 6 (DPP6) is an alpha and beta cell-specific biomarker, and developed a camelid antibody (nanobody '4hD29') against it. We demonstrated the possibility to detect DPP6-expressing cells by single-photon emission computed tomography (SPECT)/ computed tomography (CT), but the correlation between the number of cells grafted and the SPECT signal was not assessed. Here, we investigate whether the 4hD29 nanobody allows us to detect different amounts of human pancreatic islets implanted into immune-deficient mice. In addition, we also describe the adaptation of the probe for use with positron emission tomography (PET). METHODS: DPP6 expression was assessed in human samples using tissue arrays and immunohistochemistry. The effect of the 4hD29 nanobody on cell death and glucose-stimulated insulin secretion was measured in EndoC-ßH1 cells and in human islets using Hoechst/propidium iodide staining and an anti-insulin ELISA, respectively. We performed in vivo SPECT imaging on severe combined immunodeficient (SCID) mice transplanted with different amounts of EndoC-ßH1 cells (2 × 106, 5 × 106 and 10 × 106 cells), human islets (1000 and 3000) or pancreatic exocrine tissue using 99mTc-labelled 4hD29 nanobody. This DPP6 nanobody was also conjugated to N-chlorosuccinimide (NCS)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), radiolabelled with either 67Ga (SPECT) or 68Ga (PET) and used in a proof-of-principle experiment to detect DPP6-expressing cells (Kelly neuroblastoma) grafted in SCID mice. RESULTS: The DPP6 protein is mainly expressed in pancreatic islets. Importantly, the anti-DPP6 nanobody 4hD29 allows non-invasive detection of high amounts of EndoC-ßH1 cells or human islets grafted in immunodeficient mice. This suggests that the probe must be further improved to detect lower numbers of islet cells. The 4hD29 nanobody neither affected beta cell viability nor altered insulin secretion in EndoC-ßH1 cells and human islets. The conversion of 4hD29 nanobody into a PET probe was successful and did not alter its specificity. CONCLUSIONS/INTERPRETATION: These findings suggest that the anti-DPP6 4hD29 nanobody may become a useful tool for the quantification of human islet grafts in mice and, pending future development, islet mass in individuals with diabetes.


Asunto(s)
Rastreo Celular/métodos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/inmunología , Células Secretoras de Insulina/metabolismo , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos/diagnóstico por imagen , Anticuerpos de Dominio Único/farmacología , Animales , Recuento de Células , Células Cultivadas , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Femenino , Radioisótopos de Galio/análisis , Radioisótopos de Galio/farmacocinética , Xenoinjertos , Humanos , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Imagen Molecular/métodos , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/farmacocinética , Trazadores Radiactivos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Anticuerpos de Dominio Único/análisis , Anticuerpos de Dominio Único/química
8.
Arterioscler Thromb Vasc Biol ; 39(12): 2520-2530, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597443

RESUMEN

OBJECTIVE: Contrast-enhanced ultrasound molecular imaging (CEUMI) of endothelial expression of VCAM (vascular cell adhesion molecule)-1 could improve risk stratification for atherosclerosis. The microbubble contrast agents developed for preclinical studies are not suitable for clinical translation. Our aim was to characterize and validate a microbubble contrast agent using a clinically translatable single-variable domain immunoglobulin (nanobody) ligand. Approach and Results: Microbubble with a nanobody targeting VCAM-1 (MBcAbVcam1-5) and microbubble with a control nanobody (MBVHH2E7) were prepared and characterized in vitro. Attachment efficiency to VCAM-1 under continuous and pulsatile flow was investigated using activated murine endothelial cells. In vivo CEUMI of the aorta was performed in atherosclerotic double knockout and wild-type mice after injection of MBcAbVcam1-5 and MBVHH2E7. Ex vivo CEUMI of human endarterectomy specimens was performed in a closed-loop circulation model. The surface density of the nanobody ligand was 3.5×105 per microbubble. Compared with MBVHH2E7, MBcAbVcam1-5 showed increased attachment under continuous flow with increasing shear stress of 1-8 dynes/cm2 while under pulsatile flow attachment occurred at higher shear stress. CEUMI in double knockout mice showed signal enhancement for MBcAbVcam1-5 in early (P=0.0003 versus MBVHH2E7) and late atherosclerosis (P=0.007 versus MBVHH2E7); in wild-type mice, there were no differences between MBcAbVcam1-5 and MBVHH2E7. CEUMI in human endarterectomy specimens showed a 100% increase in signal for MBcAbVcam1-5versus MBVHH2E7 (20.6±27.7 versus 9.6±14.7, P=0.0156). CONCLUSIONS: CEUMI of the expression of VCAM-1 is feasible in murine models of atherosclerosis and on human tissue using a clinically translatable microbubble bearing a VCAM-1 targeted nanobody.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Imagen Molecular/métodos , Ultrasonografía/métodos , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Animales , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/metabolismo , Aterosclerosis/diagnóstico , Tronco Braquiocefálico/diagnóstico por imagen , Tronco Braquiocefálico/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Humanos , Ratones , Ratones Noqueados , Microburbujas
9.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374804

RESUMEN

The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era. Drugs targeting these ICPs have improved clinical outcome in a number of patients with solid and hematological cancers. Nonetheless, some patients have no benefit from these ICP-blocking therapies. This observation has instigated research into alternative pathways that are responsible for the escape of cancer cells from anti-cancer immune responses. From this research, a number of molecules have emerged as promising therapeutic targets, including lymphocyte activating gene-3 (LAG-3), a next-generation ICP. We will review the current knowledge on the biological activity of LAG-3 and linked herewith its expression on activated immune cells. Moreover, we will discuss the prognostic value of LAG-3 and how LAG-3 expression in tumors can be monitored, which is an aspect that is of utmost importance, as the blockade of LAG-3 is actively pursued in clinical trials.


Asunto(s)
Antígenos CD/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/inmunología , Animales , Antígenos CD/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Proteína del Gen 3 de Activación de Linfocitos
10.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906437

RESUMEN

Nanobodies (Nbs) are the smallest antigen-binding, single domain fragments derived from heavy-chain-only antibodies from Camelidae. Among the several advantages over conventional monoclonal antibodies, their small size (12-15 kDa) allows them to extravasate rapidly, to show improved tissue penetration, and to clear rapidly from blood, which are important characteristics for cancer imaging and targeted radiotherapy. Herein, we identified Nbs against CD33, a marker for acute myeloid leukemia (AML). A total of 12 Nbs were generated against recombinant CD33 protein, out of which six bound natively CD33 protein, expressed on the surface of acute myeloid leukemia THP-1 cells. The equilibrium dissociation constants (KD) of these six Nbs and CD33 range from 4 to 270 nM, and their melting temperature (Tm) varies between 52.67 and 67.80 °C. None of these Nbs showed leukemogenicity activity in vitro. The selected six candidates were radiolabeled with 99mTc, and their biodistribution was evaluated in THP-1-tumor-bearing mice. The imaging results demonstrated the fast tumor-targeting capacity of the Nbs in vivo. Among the anti-CD33 Nbs, Nb_7 showed the highest tumor uptake (2.53 ± 0.69 % injected activity per gram (IA/g), with low background signal, except in the kidneys and bladder. Overall, Nb_7 exhibits the best characteristics to be used as an anti-CD33 targeting vehicle for future diagnostic or therapeutic applications.


Asunto(s)
Leucemia Mieloide Aguda/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Anticuerpos de Dominio Único/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epítopos/inmunología , Femenino , Humanos , Cinética , Ratones , Ratones SCID , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Anticuerpos de Dominio Único/genética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Temperatura de Transición
11.
Molecules ; 25(8)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316285

RESUMEN

Since atherosclerotic plaques are small and sparse, their non-invasive detection via PET imaging requires both highly specific radiotracers as well as imaging systems with high sensitivity and resolution. This study aimed to assess the targeting and biodistribution of a novel fluorine-18 anti-VCAM-1 Nanobody (Nb), and to investigate whether sub-millimetre resolution PET imaging could improve detectability of plaques in mice. The anti-VCAM-1 Nb functionalised with the novel restrained complexing agent (RESCA) chelator was labelled with [18F]AlF with a high radiochemical yield (>75%) and radiochemical purity (>99%). Subsequently, [18F]AlF(RESCA)-cAbVCAM1-5 was injected in ApoE-/- mice, or co-injected with excess of unlabelled Nb (control group). Mice were imaged sequentially using a cross-over design on two different commercially available PET/CT systems and finally sacrificed for ex vivo analysis. Both the PET/CT images and ex vivo data showed specific uptake of [18F]AlF(RESCA)-cAbVCAM1-5 in atherosclerotic lesions. Non-specific bone uptake was also noticeable, most probably due to in vivo defluorination. Image analysis yielded higher target-to-heart and target-to-brain ratios with the ß-CUBE (MOLECUBES) PET scanner, demonstrating that preclinical detection of atherosclerotic lesions could be improved using the latest PET technology.


Asunto(s)
Anticuerpos/administración & dosificación , Placa Aterosclerótica/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Animales , Anticuerpos/química , Anticuerpos/inmunología , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Radioisótopos de Flúor/química , Humanos , Inyecciones , Ratones , Imagen Molecular , Placa Aterosclerótica/metabolismo , Radiofármacos/química , Distribución Tisular
12.
Hum Mol Genet ; 26(7): 1353-1364, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334940

RESUMEN

Gelsolin amyloidosis is a dominantly inherited, incurable type of amyloidosis. A single point mutation in the gelsolin gene (G654A is most common) results in the loss of a Ca2+ binding site in the second gelsolin domain. Consequently, this domain partly unfolds and exposes an otherwise buried furin cleavage site at the surface. During secretion of mutant plasma gelsolin consecutive cleavage by furin and MT1-MMP results in the production of 8 and 5 kDa amyloidogenic peptides. Nanobodies that are able to (partly) inhibit furin or MT1-MMP proteolysis have previously been reported. In this study, the nanobodies have been combined into a single bispecific format able to simultaneously shield mutant plasma gelsolin from intracellular furin and extracellular MT1-MMP activity. We report the successful in vivo expression of this bispecific nanobody following adeno-associated virus serotype 9 gene therapy in gelsolin amyloidosis mice. Using SPECT/CT and immunohistochemistry, a reduction in gelsolin amyloid burden was detected which translated into improved muscle contractile properties. We conclude that a nanobody-based gene therapy using adeno-associated viruses shows great potential as a novel strategy in gelsolin amyloidosis and potentially other amyloid diseases.


Asunto(s)
Amiloidosis/genética , Amiloidosis/terapia , Gelsolina/genética , Terapia Genética , Amiloidosis/patología , Animales , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/uso terapéutico , Dependovirus/genética , Dependovirus/inmunología , Modelos Animales de Enfermedad , Furina/inmunología , Furina/uso terapéutico , Gelsolina/inmunología , Humanos , Metaloproteinasa 14 de la Matriz/inmunología , Metaloproteinasa 14 de la Matriz/uso terapéutico , Ratones , Mutación Puntual/genética , Anticuerpos de Dominio Único/administración & dosificación , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología
13.
Biol Chem ; 400(3): 323-332, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30240352

RESUMEN

Radiolabeling of nanobodies with radiometals by chelation has the advantage of being simple, fast and easy to implement in clinical routine. In this study, we validated 68Ga/111In-labeled anti-VCAM-1 nanobodies as potential radiometal-based tracers for molecular imaging of atherosclerosis. Both showed specific targeting of atherosclerotic lesions in ApoE-/- mice. Nevertheless, uptake in lesions and constitutively VCAM-1 expressing organs was lower than previously reported for the 99mTc-labeled analog. We further investigated the impact of different radiolabeling strategies on the in vivo biodistribution of nanobody-based tracers. Comparison of the pharmacokinetics between 68Ga-, 18F-, 111In- and 99mTc-labeled anti-VCAM-1 nanobodies showed highest specific uptake for 99mTc-nanobody at all time-points, followed by the 68Ga-, 111In- and 18F-labeled tracer. No correlation was found with the estimated number of radioisotopes per nanobody, and mimicking specific activity of other radiolabeling methods did not result in an analogous biodistribution. We also demonstrated specificity of the tracer using mice with a VCAM-1 knocked-down phenotype, while showing for the first time the in vivo visualization of a protein knock-down using intrabodies. Conclusively, the chosen radiochemistry does have an important impact on the biodistribution of nanobodies, in particular on the specific targeting, but differences are not purely due to the tracer's specific activity.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Imagen Molecular , Anticuerpos de Dominio Único/química , Molécula 1 de Adhesión Celular Vascular/inmunología , Animales , Radioisótopos de Galio , Radioisótopos de Indio , Marcaje Isotópico , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo
14.
Mol Pharm ; 16(1): 214-226, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30427188

RESUMEN

ImmunoPET agents are being investigated to assess the status of epidermal growth factor receptor 2 (HER2) in breast cancer patients with the goal of selecting those likely to benefit from HER2-targeted therapies and monitoring their progress after these treatments. We have been exploring the use of single domain antibody fragments (sdAbs) labeled with 18F using residualizing prosthetic agents for this purpose. In this study, we have labeled two sdAbs that bind to different domains on the HER2 receptor, 2Rs15d and 5F7, using 2,3,5,6-tetrafluorophenyl 6-[18F]fluoronicotinate ([18F]TFPFN) and evaluated their HER2 targeting properties in vitro and in vivo. The overall decay-corrected radiochemical yield for the synthesis of [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was 5.7 ± 3.6 and 4.0 ± 2.0%, respectively. The radiochemical purity of labeled sdAbs was >95%, immunoreactive fractions were about 60%, and affinity was in the low nanomolar range. Intracellularly trapped activity from [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 in HER2-expressing SKOV-3 ovarian and BT474M1 breast carcinoma cells were similar to the sdAbs labeled using the previously validated radioiodination residualizing prosthetic agents N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) and N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate ( iso-[125I]SGMIB). Intracellular activity was about 2-fold higher for radiolabeled 5F7 compared with 2Rs15d for both 18F and 125I. While tumor uptake of both [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was comparable to those for the coadministered 125I-labeled sdAb, renal uptake of the 18F-labeled sdAbs was substantially lower. In microPET images, the tumor was clearly delineated in SKOV-3 and BT474 xenograft-bearing athymic mice with low levels of background activity in normal tissues, except the bladder. These results indicate that the [18F]TFPFN prosthetic group could be a valuable reagent for developing sdAb-based immunoPET imaging agents.


Asunto(s)
Benzoatos/química , Neoplasias de la Mama/diagnóstico por imagen , Radioisótopos de Flúor/química , Riñón/metabolismo , Radiofármacos/química , Receptor ErbB-2/metabolismo , Anticuerpos de Dominio Único/química , Succinimidas/química , Animales , Apoptosis , Western Blotting , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Citocromos c/metabolismo , Fragmentación del ADN , Femenino , Citometría de Flujo , Humanos , Radioisótopos de Yodo/química , Riñón/diagnóstico por imagen , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Bioconjug Chem ; 29(12): 4090-4103, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30384599

RESUMEN

Single domain antibody fragments (sdAbs) labeled with 18F have shown promise for assessing the status of oncological targets such as the human epidermal growth factor receptor 2 (HER2) by positron emission tomography (PET). Earlier, we evaluated two residualizing prosthetic agents for 18F-labeling of anti-HER2 sdAbs; however, these methods resulted in poor labeling yields and high uptake of 18F activity in the kidneys. To potentially mitigate these limitations, we have now developed an 18F labeling method that utilizes the trans-cyclooctene (TCO)-tetrazine (Tz)-based inverse-electron demand Diels-Alder reaction (IEDDAR) in tandem with a renal brush border enzyme-cleavable glycine-lysine (GK) linker in the prosthetic moiety. The HER2-targeted sdAb 2Rs15d was derivatized with TCO-GK-PEG4-NHS or TCO-PEG4-NHS, which lacks the cleavable linker. As an additional control, the non HER2-specific sdAb R3B23 was derivatized with TCO-GK-PEG4-NHS. The resultant sdAb conjugates were labeled with 18F by IEDDAR using [18F]AlF-NOTA-PEG4-methyltetrazine. As a positive control, the 2Rs15d sdAb was radioiodinated using the well-characterized residualizing prosthetic agent, N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB). Synthesis of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was achieved with an overall radiochemical yield (RCY) of 17.8 ± 1.5% ( n = 5) in 90 min, a significant improvement over prior methods (3-4% in 2-3 h). In vitro assays indicated that [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d bound with high affinity and immunoreactivity to HER2. In normal mice, when normalized to coinjected [125I]SGMIB-2Rs15d, the kidney uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d was 15- and 28-fold lower ( P < 0.001) than that seen for the noncleavable control ([18F]AlF-NOTA-Tz-TCO-2Rs15d) at 1 and 3 h, respectively. Uptake of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d in HER2-expressing SKOV-3 ovarian carcinoma xenografts implanted in athymic mice was about 80% of that seen for coinjected [125I]SGMIB-2Rs15d. On the other hand, kidney uptake was 5-6-fold lower, and as a result, tumor-to-kidney ratios were 4-fold higher for [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d than those for [125I]SGMIB-2Rs15d. SKOV-3 xenografts were clearly delineated even at 1 h after administration of [18F]AlF-NOTA-Tz-TCO-GK-2Rs15d by Micro-PET/CT imaging with even higher contrast observed thereafter. In conclusion, this strategy warrants further evaluation for labeling small proteins such as sdAbs because it offers the benefits of good radiochemical yields and enhanced tumor-to-normal tissue ratios, particularly in the kidney.


Asunto(s)
Ciclooctanos/química , Radioisótopos de Flúor/química , Compuestos Heterocíclicos con 1 Anillo/química , Riñón/enzimología , Microvellosidades/enzimología , Radiofármacos/química , Anticuerpos de Dominio Único/química , Animales , Línea Celular Tumoral , Femenino , Humanos , Riñón/ultraestructura , Ratones , Ratones Desnudos
16.
Bioorg Med Chem ; 26(8): 1939-1949, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534937

RESUMEN

In a previous study, we evaluated a HER2-specific single domain antibody fragment (sdAb) 2Rs15d labeled with 18F via conjugation of a residualizing prosthetic agent that was synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC). In order to potentially increase overall efficiency and decrease the time required for labeling, we now investigate the use of a strain-promoted azide-alkyne cycloaddition (SPAAC) between the 2Rs15d sdAb, which had been pre-derivatized with an azide-containing residualizing moiety, and an 18F-labeled aza-dibenzocyclooctyne derivative. The HER2-targeted sdAb 2Rs15d and a nonspecific sdAb R3B23 were pre-conjugated with a moiety containing both azide- and guanidine functionalities. The thus derivatized sdAbs were radiolabeled with 18F using an 18F-labeled aza-dibenzocyclooctyne derivative ([18F]F-ADIBO) via SPAAC, generating the desired conjugate ([18F]RL-II-sdAb). For comparison, unmodified 2Rs15d was labeled with N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB), the prototypical residualizing agent for radioiodination. Radiochemical purity (RCP), immunoreactive fraction (IRF), HER2-binding affinity and cellular uptake of [18F]RL-II-2Rs15d were assessed in vitro. Paired label biodistribution of [18F]RL-II-2Rs15d and [125I]SGMIB-2Rs15d, and microPET/CT imaging of [18F]RL-II-2Rs15d and the [18F]RL-II-R3B23 control sdAb were performed in nude mice bearing HER2-expressing SKOV-3 xenografts. A radiochemical yield of 23.9 ±â€¯6.9% (n = 8) was achieved for the SPAAC reaction between [18F]F-ADIBO and azide-modified 2Rs15d and the RCP of the labeled sdAb was >95%. The affinity (Kd) and IRF for the binding of [18F]RL-II-2Rs15d to HER2 were 5.6 ±â€¯1.3 nM and 73.1 ±â€¯22.5% (n = 3), respectively. The specific uptake of [18F]RL-II-2Rs15d by HER2-expressing BT474M1 breast carcinoma cells in vitro was 14-17% of the input dose at 1, 2, and 4 h, slightly higher than seen for co-incubated [125I]SGMIB-2Rs15d. The uptake of [18F]RL-II-2Rs15d in SKOV-3 xenografts at 1 h and 2 h p.i. were 5.54 ±â€¯0.77% ID/g and 6.42 ±â€¯1.70% ID/g, respectively, slightly higher than those for co-administered [125I]SGMIB-2Rs15d (4.80 ±â€¯0.78% ID/g and 4.78 ±â€¯1.39% ID/g). MicroPET/CT imaging with [18F]RL-II-2Rs15d at 1-3 h p.i. clearly delineated SKOV-3 tumors while no significant accumulation of activity in tumor was seen for [18F]RL-II-R3B23. With the exception of kidneys, normal tissue levels for [18F]RL-II-2Rs15d were low and cleared rapidly. To our knowledge, this is the first time SPAAC method has been used to label an sdAb with 18F, especially with residualizing functionality.


Asunto(s)
Radioisótopos de Flúor/química , Radiofármacos/química , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/química , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Caproatos/química , Línea Celular Tumoral , Química Clic , Femenino , Humanos , Ratones , Ratones Desnudos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular , Trasplante Heterólogo
17.
Chemistry ; 23(40): 9632-9640, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28449310

RESUMEN

G protein-coupled receptors (GPCRs) play an important role in many cellular responses; as such, their mechanism of action is of utmost interest. To gain insight into the active conformation of GPCRs, the X-ray crystal structures of nanobody (Nb)-stabilized ß2 -adrenergic receptor (ß2 AR) have been reported. Nb80, in particular, is able to bind the intracellular G protein binding site of ß2 AR and stabilize the receptor in an active conformation. Within Nb80, the complementarity-determining region 3 (CDR3) is responsible for most of the binding interactions. Hence, we hypothesized that peptidomimetics of the CDR3 loop might be sufficient for binding to the receptor, inhibiting the interaction of ß2 AR with intracellular GPCR interacting proteins (e.g., G proteins). Based on previous crystallographic data, a set of peptidomimetics were synthesized that, similar to the Nb80 CDR3 loop, adopt a ß-hairpin conformation. Syntheses, conformational analysis, binding and functional in vitro assays, as well as internalization experiments, were performed. We demonstrate that peptidomimetics can structurally mimic the CDR3 loop of a nanobody and its function by inhibiting G protein coupling as measured by partial inhibition of cAMP production.


Asunto(s)
Peptidomiméticos/síntesis química , Receptores Adrenérgicos beta 2/metabolismo , Anticuerpos de Dominio Único/química , Sitios de Unión , Simulación por Computador , Diseño de Fármacos , Células HEK293 , Células HeLa , Humanos , Ligandos , Imagen Óptica , Peptidomiméticos/química , Unión Proteica , Conformación Proteica , Receptores Adrenérgicos beta 2/química
18.
Mol Pharm ; 14(4): 1145-1153, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28245129

RESUMEN

Advances in optical imaging technologies have stimulated the development of near-infrared (NIR) fluorescently labeled targeted probes for use in image-guided surgery. As nanobodies have already proven to be excellent candidates for molecular imaging, we aimed in this project to design NIR-conjugated nanobodies targeting the tumor biomarker HER2 for future applications in this field and to evaluate the effect of dye and dye conjugation chemistry on their pharmacokinetics during development. IRDye800CW or IRdye680RD were conjugated either randomly (via lysines) or site-specifically (via C-terminal cysteine) to the anti-HER2 nanobody 2Rs15d. After verification of purity and functionality, the biodistribution and tumor targeting of the NIR-nanobodies were assessed in HER2-positive and -negative xenografted mice. Site-specifically IRDye800CW- and IRdye680RD-labeled 2Rs15d as well as randomly labeled 2Rs15d-IRDye680RD showed rapid tumor accumulation and low nonspecific uptake, resulting in high tumor-to-muscle ratios at early time points (respectively 6.6 ± 1.0, 3.4 ± 1.6, and 3.5 ± 0.9 for HER2-postive tumors at 3 h p.i., while <1.0 for HER2-negative tumors at 3 h p.i., p < 0.05). Contrarily, using the randomly labeled 2Rs15d-IRDye800CW, HER2-positive and -negative tumors could only be distinguished after 24 h due to high nonspecific signals. Moreover, both randomly labeled 2Rs15d nanobodies were not only cleared via the kidneys but also partially via the hepatobiliary route. In conclusion, near-infrared fluorescent labeling of nanobodies allows rapid, specific, and high contrast in vivo tumor imaging. Nevertheless, the fluorescent dye as well as the chosen conjugation strategy can affect the nanobodies' properties and consequently have a major impact on their pharmacokinetics.


Asunto(s)
Bencenosulfonatos/administración & dosificación , Indoles/administración & dosificación , Nanopartículas/metabolismo , Neoplasias/diagnóstico , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular/efectos de los fármacos , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetulus , Femenino , Ratones , Ratones Desnudos , Imagen Molecular/métodos , Neoplasias/metabolismo , Receptor ErbB-2/metabolismo , Espectroscopía Infrarroja Corta/métodos , Cirugía Asistida por Computador/métodos
19.
Protein Expr Purif ; 133: 25-34, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28238765

RESUMEN

Site-specific functionalization of nanobodies after introducing bioorthogonal groups offers the possibility to biofunctionalize surfaces with a uniformly oriented layer of nanobodies. In this paper, expressed protein ligation (EPL) was used for site-specific alkynation of the model nanobody NbBcII10. In contrast to EPL constructs, which are typically expressed in the cytoplasm, nanobodies are expressed in the periplasm where its oxidizing environment ensures a correct folding and disulfide bond formation. Different pathways were explored to express the EPL constructs in the periplasm but simultaneously, the effect of cytoplasmic expression on the functionality of NbBcII10 was also evaluated. By using Escherichia coli SHuffle®T7 cells, it was demonstrated that expression of the EPL complex in the cytoplasm was readily established and that site-specifically mono-alkynated nanobodies can be produced with the same binding properties as the non-modified NbBcII10 expressed in the periplasm. In conclusion, this paper shows that periplasmic expression of the EPL complex is quite challenging, but cytoplasmic expression has proven to be a valuable alternative.


Asunto(s)
Citoplasma/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Periplasma/metabolismo , Anticuerpos de Dominio Único , Citoplasma/genética , Escherichia coli/genética , Periplasma/genética , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/genética
20.
Mol Ther ; 24(5): 890-902, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26775809

RESUMEN

A detrimental role for matrix metalloproteinase 8 (MMP8) has been identified in several pathological conditions, e.g., lethal hepatitis and the systemic inflammatory response syndrome. Since matrix MMP8-deficient mice are protected in the above-mentioned diseases, specific MMP8 inhibitors could be of clinical value. However, targeting a specific matrix metalloproteinase remains challenging due to the strong structural homology of matrix metalloproteinases, which form a family of 25 members in mammals. Single-domain antibodies, called nanobodies, offer a range of possibilities toward therapy since they are easy to generate, express, produce, and modify, e.g., by linkage to nanobodies directed against other target molecules. Hence, we generated small MMP8-binding nanobodies, and established a proof-of-principle for developing nanobodies that inhibit matrix metalloproteinase activity. Also, we demonstrated for the first time the possibility of expressing nanobodies systemically by in vivo electroporation of the muscle and its relevance as a potential therapy in inflammatory diseases.


Asunto(s)
Inflamación/tratamiento farmacológico , Metaloproteinasa 8 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/administración & dosificación , Anticuerpos de Dominio Único/administración & dosificación , Animales , Modelos Animales de Enfermedad , Electroporación , Inflamación/inducido químicamente , Inhibidores de la Metaloproteinasa de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Ratones , Ratones Noqueados , Simulación del Acoplamiento Molecular , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA