Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 261: 119759, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39122163

RESUMEN

Fabrication of ternary composited photocatalytic nanomaterials with strong interaction is vital to deriving the fast charge separation for efficient photodegradation of organic contaminants in wastewater under visible light. In this work, novel ternary 2D/3D/2D MoS2-In2O3-WS2 multi-nanostructures were synthesized using facile hydrothermal processes. XRD, FTIR, and XPS results confirmed the phase, functional groups, and element composition of pure MoS2, MoS2-In2O3, and MoS2-In2O3-WS2 hybrids. UV-DRS spectra of the MoS2-In2O3-WS2 ternary hybrid indicate maximum absorption in the visible light range with a band-gap energy value of 2.4 eV. The surface of the 2D WS2 nanosheet structure tightly blends and densely disperses 2D MoS2 nanosheets and 3D In2O3 nanocubes. This confirmed the formation of the MoS2-In2O3-WS2 ternary hybrid in the form of 2D/3D/2D multi-nanostructures, which is also indicated from SEM and HR-TEM images. The synthesized MoS2-In2O3-WS2 ternary hybrid showed maximum photocatalytic activity under visible-light for antimicrobial agents such as triclosan (TCS) and trichlorocarban (TCC). The photocatalytic activity of TCS was revealed to be 95% at 90 min, while that of TCC was 93% at 100 min. The reusability and stability tests of the prepared MoS2-In2O3-WS2 ternary hybrid after four consecutive photocatalytic cycles were analyzed by FTIR and SEM, which indicated that the prepared ternary hybrid was very stable. Overall results suggested that the developed MoS2-In2O3-WS2 (2D/3D/2D) multi-nanostructures are environmentally friendly and low-cost nanocomposites as a potential photocatalyst for the removal of antimicrobial agents from wastewater.


Asunto(s)
Disulfuros , Luz , Molibdeno , Nanocompuestos , Fotólisis , Molibdeno/química , Nanocompuestos/química , Disulfuros/química , Catálisis , Antiinfecciosos/química , Sulfuros/química , Contaminantes Químicos del Agua/química , Aguas Residuales/química
2.
Sci Rep ; 14(1): 14518, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914614

RESUMEN

In this present work, the preparation of ternary MoS2-NiO-CuO nanohybrid by a facile hydrothermal process for photocatalytic and photovoltaic performance is presented. The prepared nanomaterials were confirmed by physio-chemical characterization. The nanosphere morphology was confirmed by electron microscopy techniques for the MoS2-NiO-CuO nanohybrid. The MoS2-NiO-CuO nanohybrid demonstrated enhanced crystal violet (CV) dye photodegradation which increased from 50 to 95% at 80 min; The degradation of methyl orange (MO) dye increased from 56 to 93% at 100 min under UV-visible light irradiation. The trapping experiment was carried out using different solvents for active species and the Z-Scheme photocatalytic mechanism was discussed in detail. Additionally, a batch series of stability experiments were carried out to determine the photostability of materials, and the results suggest that the MoS2-NiO-CuO nanohybrid is more stable even after four continuous cycles of photocatalytic activity. The MoS2-NiO-CuO nanohybrid delivers photoconversion efficiency (4.92%) explored efficacy is 3.8 times higher than the bare MoS2 (1.27%). The overall results indicated that the MoS2-NiO-CuO nanohybrid nanostructure could be a potential candidate to be used to improve photocatalytic performance and DSSC solar cell applications as well.

3.
Mater Sci Eng C Mater Biol Appl ; 99: 304-314, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889704

RESUMEN

Mechanically robust, biocompatible and corrosion resistant Ag doped NiTi (NiTi/Ag) coatings were formed on implant grade commercially pure titanium substrates by R.F. magnetron sputtering. Five samples with varying silver content (0, 1, 3, 7, and 10 at.%) were prepared by controlling the power applied to Ag and NiTi targets. The intensity of X-ray photoelectron spectra peaks corresponding to Ni2p, Ti2p, Ag3d components were found proportional to respective coating compositions. The soft Ag crystallites were decreased the roughness and crystallinity of NiTi/Ag. Among all compositions, NiTi/Ag coating with 3 at.% Ag exhibited lowest friction coefficient (0.1) and wear rate (0.69 × 10-07 mm3/N ∗ mm). Electrochemical corrosion measurements indicated that Ag incorporation increased the corrosion resistance of NiTi. Increase in Ag content shifted Ecorr values in the anodic direction, and reduced the current density by one-order-of-magnitude. When cultured on NiTi/Ag coating with 3 at.% Ag, human dermal fibroblast neonatal cells demonstrated highest cell viability. The fluorescence micrographic image of the immunostained cells showed a well grown actin filament network. Overall, NiTi/Ag coated titanium substrates were found to be a promising orthopedic implant material.


Asunto(s)
Aleaciones/farmacología , Materiales Biocompatibles Revestidos/farmacología , Ensayo de Materiales/métodos , Ondas de Radio , Plata/farmacología , Titanio/farmacología , Corrosión , Dermis/citología , Impedancia Eléctrica , Técnicas Electroquímicas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fricción , Humanos , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA