Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Neurobiol Dis ; 163: 105603, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954322

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Asunto(s)
Hipocampo/metabolismo , Ovillos Neurofibrilares/metabolismo , Septinas/metabolismo , Sinapsis/metabolismo , Animales , Autofagia/fisiología , Modelos Animales de Enfermedad , Hipocampo/patología , Humanos , Ratones , Ovillos Neurofibrilares/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Sinapsis/patología
2.
Pharmacol Res ; 164: 105368, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33316385

RESUMEN

Several observational studies suggest that greasy fish may reduce cardiovascular risk, whose benefits have been attributed to the presence Omega-3 polyunsaturated fatty acids (OM3FA). However, there are some randomized controlled trials (RCTs) that have shown contradictory results concerning the cardiovascular benefits of OM3FA. Analyzing these RCTs we found that the use of olive oil in some RCTs could be responsible for contradictory results, since both. since both olive oil and OM3FA, in addition to reduce triglycerides, have anti-platelet and anti-inflammatory activities, considered important for the stabilization of atherosclerotic plaques. This pharmacodynamic profile may have a cardio protective effect that was confirmed by several RCTs. Therefore, olive oil seems an active substance, and its use might have reduced the differences between groups masking the efficacy of OM3FA. This inferred lack of OM3FA cardiovascular benefits due to bias induced by a "false placebo" control, raises epistemological considerations on the choice of placebos that always should be pharmacologically inert substances. More studies are necessary to clarify the real efficacy of OM3FA that is more innocuous than many medicines, but it seems useful in future RCTs the use of a truly inert substance as a placebo, as well as the outline of a semi quantitative dose-response curve suggestive of a causal nexus between active substances and their outcomes.


Asunto(s)
Antiinflamatorios/farmacología , Cardiotónicos/farmacología , Ácidos Grasos Omega-3/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , Animales , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Aceite de Oliva/farmacología , Placebos , Resultado del Tratamiento
3.
Neurobiol Dis ; 145: 105043, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32798727

RESUMEN

Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Síndrome de Rett/metabolismo , Transducción de Señal/fisiología , Animales , Hipocampo/metabolismo , Proteína 2 de Unión a Metil-CpG , Ratones , Ratones Noqueados , Receptor trkB/metabolismo , Síndrome de Rett/genética
4.
Cereb Cortex ; 25(9): 3107-21, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24860020

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length (FL) receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and regulating synaptic plasticity and memory. TrkB and BDNF signaling are impaired in Alzheimer's disease (AD), a neurodegenerative disease involving accumulation of amyloid-ß (Aß) peptide. We recently showed that Aß leads to a decrease of TrkB-FL receptor and to an increase of truncated TrkB receptors by an unknown mechanism. In the present study, we found that (1) Aß selectively increases mRNA levels for the truncated TrkB isoforms without affecting TrkB-FL mRNA levels, (2) Aß induces a calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc-binding site, originating a new truncated TrkB receptor (TrkB-T') and an intracellular fragment (TrkB-ICD), which is also detected in postmortem human brain samples, (3) Aß impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, and long-term potentiation in hippocampal slices. It is concluded that Aß-induced calpain activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calpaína/farmacología , Lóbulo Frontal/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor trkB/metabolismo , Animales , Encéfalo/citología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptor trkB/genética , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
Growth Factors ; 33(4): 298-308, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26365294

RESUMEN

Brain-derived neurotrophic factor (BDNF) promotes neuronal survival through TrkB-FL activation. The activation of adenosine A2A receptors (A2AR) is essential for most of BDNF-mediated synaptic actions, such as synaptic plasticity, transmission and neurotransmitter release. We now aimed at evaluating the A2AR influence upon BDNF-mediated neuroprotection against Aß25-35 toxicity in cultured neurons. Results showed that BDNF increases cell survival and reduces the caspase-3 and calpain activation induced by amyloid-ß (Aß) peptide, in a mechanism probably dependent on PLCγ pathway. This BDNF-mediated neuroprotection is not affected by A2AR activation or inhibition. Moreover neither activation nor inhibition of A2AR, per se, significantly influenced Aß-induced neuronal death on calpain-mediated cleavage of TrkB induced by Aß. In conclusion, these results suggest that, in opposition to the fast synaptic actions of BDNF, the neuroprotective actions of this neurotrophin against a strong Aß insult do not require the activation of A2AR.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores de Adenosina A2/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Caspasa 3/metabolismo , Células Cultivadas , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo
6.
Purinergic Signal ; 11(4): 607-12, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26452489

RESUMEN

Adenosine, through A(2A) receptor (A(2A)R) activation, can act as a metamodulator, controlling the actions of other modulators, as brain-derived neurotrophic factor (BDNF). Most of the metamodulatory actions of adenosine in the hippocampus have been evaluated in excitatory synapses. However, adenosine and BDNF can also influence GABAergic transmission. We thus evaluated the role of A(2A)R on the modulatory effect of BDNF upon glutamate and GABA release from isolated hippocampal nerve terminals (synaptosomes). BDNF (30 ng/ml) enhanced K(+)-evoked [(3)H]glutamate release and inhibited the K(+)-evoked [(3)H]GABA release from synaptosomes. The effect of BDNF on both glutamate and GABA release requires tonic activation of adenosine A(2A)R since for both neurotransmitters, the BDNF action was blocked by the A(2A)R antagonist SCH 58261 (50 nM). In the presence of the A(2A)R agonist, CGS21680 (30 nM), the effect of BDNF on either glutamate or GABA release was, however, not potentiated. It is concluded that both the inhibitory actions of BDNF on GABA release as well as the facilitatory action of the neurotrophin on glutamate release are dependent on the activation of adenosine A(2A)R by endogenous adenosine. However, these actions could not be further enhanced by exogenous activation of A(2A)R.


Asunto(s)
Agonistas del Receptor de Adenosina A2/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Receptor de Adenosina A2A/efectos de los fármacos , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Fenetilaminas/farmacología , Potasio/farmacología , Pirimidinas/farmacología , Ratas , Ratas Wistar , Sinaptosomas/efectos de los fármacos , Triazoles/farmacología
7.
Cereb Cortex ; 24(1): 67-80, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22997174

RESUMEN

Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.


Asunto(s)
Adenosina Quinasa/fisiología , Adenosina/fisiología , Homeostasis/fisiología , Sinapsis/fisiología , Adenosina Quinasa/genética , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Espacio Extracelular/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Purinas/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/fisiología , Receptores de GABA-A/fisiología , Transmisión Sináptica/fisiología
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142760

RESUMEN

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Ratones , Humanos , Animales , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/terapia , Enfermedad de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Colesterol 24-Hidroxilasa/uso terapéutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patología
9.
J Neurosci ; 32(34): 11750-62, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22915117

RESUMEN

Parkinson's disease (PD) is the most common representative of a group of disorders known as synucleinopathies, in which misfolding and aggregation of α-synuclein (a-syn) in various brain regions is the major pathological hallmark. Indeed, the motor symptoms in PD are caused by a heterogeneous degeneration of brain neurons not only in substantia nigra pars compacta but also in other extrastriatal areas of the brain. In addition to the well known motor dysfunction in PD patients, cognitive deficits and memory impairment are also an important part of the disorder, probably due to disruption of synaptic transmission and plasticity in extrastriatal areas, including the hippocampus. Here, we investigated the impact of a-syn aggregation on AMPA and NMDA receptor-mediated rat hippocampal (CA3-CA1) synaptic transmission and long-term potentiation (LTP), the neurophysiological basis for learning and memory. Our data show that prolonged exposure to a-syn oligomers, but not monomers or fibrils, increases basal synaptic transmission through NMDA receptor activation, triggering enhanced contribution of calcium-permeable AMPA receptors. Slices treated with a-syn oligomers were unable to respond with further potentiation to theta-burst stimulation, leading to impaired LTP. Prior delivery of a low-frequency train reinstated the ability to express LTP, implying that exposure to a-syn oligomers drives the increase of glutamatergic synaptic transmission, preventing further potentiation by physiological stimuli. Our novel findings provide mechanistic insight on how a-syn oligomers may trigger neuronal dysfunction and toxicity in PD and other synucleinopathies.


Asunto(s)
Potenciación a Largo Plazo/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , alfa-Sinucleína/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Biofisica , Biotinilación , Línea Celular Tumoral , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Líquido Extracelular/metabolismo , Hipocampo/citología , Humanos , Insulina/farmacología , L-Lactato Deshidrogenasa/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Neuroblastoma/patología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Valina/análogos & derivados , Valina/farmacología , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/química
10.
J Neurochem ; 123(6): 1030-40, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23057965

RESUMEN

In situations of hypoxia, glutamate excitotoxicity induces neuronal death. The release of extracellular adenosine is also triggered and is accompanied by an increase of the stress mediator, corticotrophin-releasing factor (CRF). Adenosine A(2A) receptors contribute to glutamate excitoxicity and their blockade is effective in stress-induced neuronal deficits, but the involvement of CRF on this effect was never explored. We now evaluated the interaction between A(2A) and CRF receptors (CRFR) function, upon glutamate insult. Primary rat cortical neuronal cultures (9 days in vitro) expressing both CRF(1)R and CRF(2)R were challenged with glutamate (20-1000 µM, 24 h). CRF(1)R was found to co-localize with neuronal markers and CRF(2)R to be present in both neuronal and glial cells. The effects of the CRF and A(2A) receptors ligands on cell viability were measured using propidium iodide and Syto-13 fluorescence staining. Glutamate decreased cell viability in a concentration-dependent manner. Urocortin (10 pM), an agonist of CRF receptors, increased cell survival in the presence of glutamate. This neuroprotective effect was abolished by blocking either CRF(1)R or CRF(2)R with antalarmin (10 nM) or anti-Sauvagine-30 (10 nM), respectively. The blockade of A(2A) receptors with a selective antagonist SCH 58261 (50 nM) improved cell viability against the glutamate insult. This effect was dependent on CRF(2)R, but not on CRF(1)R activation. Overall, these data show a protective role of CRF in cortical neurons, against glutamate-induced death. The neuroprotection achieved by A(2A) receptors blockade requires CRF(2)R activation. This interaction between the adenosine and CRF receptors can explain the beneficial effects of using A(2A) receptor antagonists against stress-induced noxious effects.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Hormona Liberadora de Corticotropina/fisiología , Ácido Glutámico/toxicidad , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptor de Adenosina A2A/metabolismo , Animales , Corteza Cerebral/patología , Ácido Glutámico/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Neuronas/patología , Cultivo Primario de Células , Pirimidinas/farmacología , Pirroles/farmacología , Ratas , Ratas Sprague-Dawley , Triazoles/farmacología
11.
Int J Nanomedicine ; 15: 8609-8621, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33177821

RESUMEN

INTRODUCTION: Nanoparticles (NPs), as drug delivery systems, appear to be a promising tool for prolonged therapeutic strategies as they allow a controlled drug release over time. However, most of the studies found in the literature simply contemplate the use of a single or low number of dosages with low NPs concentrations. In the context of chronic diseases, like Alzheimer's disease, cancer or human immunodeficiency virus (HIV), where the therapeutic scheme is also chronic, studies with numerous repeated dosages are often neglected. METHODS: We screened different NPs, polymeric and lipid-based, in a repeated-dose toxicity study, to evaluate the safety and tissue distribution of promising nanocarriers to be used in the treatment of long-lasting diseases. RESULTS: After administrating 24 high concentrated doses of the selected NPs intraperitoneally (i.p.) (3 times a week for 2 months), animals have presented NPs accumulation in different tissues. However, neither toxicity, bodyweight changes nor clinical signs of disease were observed. DISCUSSION: This work demonstrates no general adverse effects upon the studied NPs repeated-dose exposure, indicating the most promising NPs to be used in the different therapeutic circumstances, which may be useful in chronic diseases treatment.


Asunto(s)
Portadores de Fármacos/farmacocinética , Nanopartículas/química , Nanopartículas/toxicidad , Animales , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/toxicidad , Sistemas de Liberación de Medicamentos/métodos , Femenino , Lípidos/química , Liposomas/administración & dosificación , Liposomas/química , Liposomas/farmacocinética , Masculino , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Polímeros/química , Distribución Tisular , Pruebas de Toxicidad
12.
Front Neurosci ; 14: 614, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625056

RESUMEN

Microglial cells have emerged as crucial players in synaptic plasticity during development and adulthood, and also in neurodegenerative and neuroinflammatory conditions. Here we found that decreased levels of Sirtuin 2 (Sirt2) deacetylase in microglia affects hippocampal synaptic plasticity under inflammatory conditions. The results show that long-term potentiation (LTP) magnitude recorded from hippocampal slices of wild type mice does not differ between those exposed to lipopolysaccharide (LPS), a pro-inflammatory stimulus, or BSA. However, LTP recorded from hippocampal slices of microglial-specific Sirt2 deficient (Sirt2-) mice was significantly impaired by LPS. Importantly, LTP values were restored by memantine, an antagonist of N-methyl-D-aspartate (NMDA) receptors. These results indicate that microglial Sirt2 prevents NMDA-mediated excitotoxicity in hippocampal slices in response to an inflammatory signal such as LPS. Overall, our data suggest a key-protective role for microglial Sirt2 in mnesic deficits associated with neuroinflammation.

13.
Front Pharmacol ; 11: 985, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733240

RESUMEN

Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer's disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid ß peptide (Aß). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aß administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aß-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aß-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aß oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aß caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aß-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.

14.
Front Neurosci ; 13: 680, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333401

RESUMEN

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene, being one of the leading causes of mental disability in females. Mutations in the MECP2 gene are responsible for 95% of the diagnosed RTT cases and the mechanisms through which these mutations relate with symptomatology are still elusive. Children with RTT present a period of apparent normal development followed by a rapid regression in speech and behavior and a progressive deterioration of motor abilities. Epilepsy is one of the most common symptoms in RTT, occurring in 60 to 80% of RTT cases, being associated with worsening of other symptoms. At this point, no cure for RTT is available and there is a pressing need for the discovery of new drug candidates to treat its severe symptoms. However, despite being a rare disease, in the last decade research in RTT has grown exponentially. New and exciting evidence has been gathered and the etiopathogenesis of this complex, severe and untreatable disease is slowly being unfolded. Advances in gene editing techniques have prompted cure-oriented research in RTT. Nonetheless, at this point, finding a cure is a distant reality, highlighting the importance of further investigating the basic pathological mechanisms of this disease. In this review, we focus our attention in some of the newest evidence on RTT clinical and preclinical research, evaluating their impact in RTT symptomatology control, and pinpointing possible directions for future research.

15.
Neuropharmacology ; 114: 12-19, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889488

RESUMEN

Age-dependent memory deterioration has been well documented and yet an increase in rat hippocampal LTP upon aging has been reported. This poses the question of whether the enhanced LTP is a cause or an attempt to compensate the memory deficits described in aged rats. Hippocampal slices from young, adult and aged Wistar rats were pre-incubated, with an NMDA receptor (NMDAR) antagonist, memantine (1 µM, 4 h), and hippocampal LTP was evaluated. The results show that memantine significantly decreases the larger LTP magnitude recorded in hippocampal slices from aged rats without compromising LTP recorded in slices from young and adult animals. To unveil the impact of in vivo administration of memantine, different doses (1, 5 and 10 mg/kg/day) or saline vehicle solution were intraperitoneally administered, for 15-20 days, to both young and aged animals. Memantine did not significantly affect neither the place learning of young animals, evaluated by Morris Water Maze, nor LTP recorded from hippocampal slices from the same group of animals. However, memantine (5 and 10 mg/kg/day) significantly decreased the large LTP recorded in hippocampal slices from aged animals. Moreover, aged animals treated with memantine (10 mg/kg/day) showed a significantly compromised place learning when compared to aged control animals. Overall, these results suggest that the larger LTP observed in aged animals is a compensatory phenomenon, rather than pathological. The finding that age-dependent blockade of LTP by a NMDAR antagonist leads to learning deficits, implies that the increased LTP observed upon aging may be playing an important role in the learning process.


Asunto(s)
Envejecimiento , Potenciación a Largo Plazo , Aprendizaje por Laberinto , Memantina/administración & dosificación , Aprendizaje Espacial , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memantina/farmacología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/fisiología , Aprendizaje Espacial/efectos de los fármacos
16.
Neurosci Lett ; 404(1-2): 143-7, 2006 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-16790314

RESUMEN

Motor nerve terminals possess adenosine A(2A) receptors and brain derived neurotrophic factor (BDNF) TrkB receptors. In the present work we evaluated how BDNF actions on neuromuscular transmission would be influenced by adenosine A(2A) receptors activation. BDNF (20-100 ng/ml) on its own was devoid of effect on evoked endplate potentials (EPPs) recorded intracellularly from rat innervated diaphragms paralysed with tubocurarine. However, when BDNF was applied 45 min after a brief (2 min) depolarizing KCl (10 mM) pulse or when the adenosine A(2A) receptors were activated with CGS 21680 (10 nM), BDNF (20 ng/ml) increased EPPs amplitude without influencing the resting membrane potential of the muscle fibre. The action of BDNF was prevented by the adenosine A(2A) receptor antagonist, ZM 241385 (50 nM) as well as by the TrkB receptor phosphorylation inhibitor, K252a (200 nM). The PKA inhibitor, H-89 (1 microM), prevented the excitatory effect of CGS 21680 (10 nM) on EPPs as well as prevented its ability to trigger a BDNF effect. The PLCgamma inhibitor, U73122 (5 microM), did not prevent the excitatory action of CGS 21680 (10 nM) on neuromuscular transmission, but abolished the action of BDNF in the presence of the A(2A) receptor agonist. The results suggest the following sequence of events in what concerns cooperativity between A(2A) receptors and TrkB receptors at the neuromuscular junction: A(2A) receptor activates the PKA pathway, which promotes the action of BDNF through TrkB receptors coupled to PLCgamma, leading to enhancement of neuromuscular transmission.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Unión Neuromuscular/fisiología , Receptor de Adenosina A2A/fisiología , Transmisión Sináptica/fisiología , Adenosina/análogos & derivados , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A2 , Animales , Diafragma/efectos de los fármacos , Diafragma/fisiología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Unión Neuromuscular/efectos de los fármacos , Fenetilaminas/farmacología , Ratas , Transmisión Sináptica/efectos de los fármacos
18.
J Alzheimers Dis ; 53(1): 85-93, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27163823

RESUMEN

Cocoa-related products like chocolate have taken an important place in our food habits and culture. In this work, we aim to examine the relationship between chocolate consumption and cognitive decline in an elderly cognitively healthy population. In the present longitudinal prospective study, a cohort of 531 participants aged 65 and over with normal Mini-Mental State Examination (MMSE; median 28) was selected. The median follow-up was 48 months. Dietary habits were evaluated at baseline. The MMSE was used to assess global cognitive function at baseline and at follow-up. Cognitive decline was defined by a decrease ≥ 2 points in the MMSE score between evaluations. Relative risk (RR) and 95% confidence interval (95% CI) estimates were adjusted for age, education, smoking, alcohol drinking, body mass index, hypertension, and diabetes. Chocolate intake was associated with a lower risk of cognitive decline (RR = 0.59, 95% CI 0.38-0.92). This protective effect was observed only among subjects with an average daily consumption of caffeine lower than 75 mg (69% of the participants; RR = 0.50, 95% CI 0.31-0.82). To our knowledge, this is the first prospective cohort study to show an inverse association between regular long-term chocolate consumption and cognitive decline in humans.


Asunto(s)
Chocolate , Trastornos del Conocimiento/epidemiología , Conducta Alimentaria , Anciano , Índice de Masa Corporal , Cafeína/administración & dosificación , Estimulantes del Sistema Nervioso Central/administración & dosificación , Distribución de Chi-Cuadrado , Trastornos del Conocimiento/metabolismo , Estudios de Cohortes , Conducta Alimentaria/psicología , Femenino , Humanos , Masculino , Escala del Estado Mental , Pruebas Neuropsicológicas , Factores de Riesgo , Encuestas y Cuestionarios
19.
J Neurosci ; 24(12): 2905-13, 2004 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15044529

RESUMEN

Both brain-derived neurotrophic factor (BDNF) and adenosine influence neuronal plasticity. We now investigated how adenosine influences the action of BDNF on synaptic transmission in the CA1 area of the rat hippocampal slices. Alone, BDNF (20-100 ng/ml) did not significantly affect field EPSPs (fEPSPs). However, a 2 min pulse of high-K(+) (10 mm) 46 min before the application of BDNF (20 ng/ml) triggered an excitatory action, an effect blocked by the TrkB receptor inhibitor K252a (200 nm), by the adenosine A(2A) receptor antagonist ZM 241385 (50 nm), and by the protein kinase A inhibitor H-89 (1 microm). Presynaptic, rather than postsynaptic depolarization was required to trigger the BDNF action because after K(+) depolarization BDNF also increased EPSCs recorded from pyramidal neurons voltage-clamped at -60 mV, and transient postsynaptic depolarization was unable to unmask the BDNF action. A weak theta burst stimulation of the afferents could elicit potentiation of synaptic transmission only when applied in the presence of BDNF. Activation of adenosine A(2A) receptors with CGS 21680 (10 nm), or the increase in extracellular adenosine levels induced by 5-iodotubercidin (100 nm) triggered the excitatory action of BDNF, a process prevented by ZM 241385 and by H-89. In the presence of dibutyryl-cAMP (0.5 mm), BDNF also increased fEPSPs but postsynaptic cAMP (0.5 mm) was unable to trigger the BDNF action. It is concluded that presynaptic activity-dependent release of adenosine, through activation of A(2A) receptors, facilitates BDNF modulation of synaptic transmission at hippocampal synapses.


Asunto(s)
Adenosina/análogos & derivados , Factor Neurotrófico Derivado del Encéfalo/farmacología , Hipocampo/fisiología , Receptor de Adenosina A2A/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Adenosina/metabolismo , Adenosina/farmacología , Adenosina Quinasa/antagonistas & inhibidores , Animales , Bucladesina/farmacología , Carbazoles/farmacología , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Alcaloides Indólicos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Técnicas de Placa-Clamp , Fenetilaminas/farmacología , Potasio/farmacología , Ratas , Ratas Wistar , Receptor de Adenosina A2A/efectos de los fármacos , Receptor trkB/antagonistas & inhibidores , Triazinas/farmacología , Triazoles/farmacología
20.
Acta Med Port ; 15(4): 269-75, 2002.
Artículo en Portugués | MEDLINE | ID: mdl-12525020

RESUMEN

The pathogenesis of cholestasis, bilirubin encephalopathy, and Alzheimer's disease appears to result from accumulation of diverse cytotoxic agents, which in turn may cause apoptotic cell death. In addition, mitochondria has lately been considered as a central executioner of programmed cell death, through the release of caspase activating factors. The aims of this study were to: (a) investigate mitochondrial perturbation during incubation of isolated mitochondria with unconjugated bilirubin (Bb), amyloid beta-peptide (A beta), and glycochenodeoxycholate (GCDC); (b) characterize membrane perturbation in isolated mitochondria induced by each toxic agent, and determine whether the mitochondrial permeabilization is required for cytochrome c redistribution. Mitochondria were isolated from rat liver and brain. Swelling and cytochrome c release were evaluated by spectrophotometry and western blot, respectively. The results showed that Bb as well as A beta and GCDC act directly at the mitochondrial level causing increased organelle volume, permeabilization, as well as cytochrome c release from the intermembrane space in a dose-dependent manner (P < 0.01). Moreover, cyclosporine A inhibited mitochondrial permeability, particularly after Bb- and GCDC-induced swelling (P < 0.01). Cytochrome c efflux was invariably prevented by cyclosporine A (P < 0.05). In conclusion, the results indicate that Bb-, A beta-, and GCDC-induced toxicity, culminating in apoptosis, may result from enhanced mitochondrial permeability, followed by cytochrome c efflux, which can be explained at least in part by the megapore opening.


Asunto(s)
Péptidos beta-Amiloides/fisiología , Bilirrubina/fisiología , Grupo Citocromo c/metabolismo , Ácido Glicoquenodesoxicólico/fisiología , Mitocondrias/metabolismo , Animales , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA