Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Hepatology ; 78(1): 26-44, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107019

RESUMEN

BACKGROUND AND AIM: Drug-induced liver injury (DILI) is a common disorder that involves both direct liver cell toxicity and immune activation. The bile acid receptor, G-protein-coupled bile acid receptor 1 (GPBAR1; Takeda G-protein-coupled receptor 5 [TGR5]), and cysteinyl leukotriene receptor (CYSLTR) 1 are G-protein-coupled receptors activated by bile acids and leukotrienes, exerting opposite effects on cell-to-cell adhesion, inflammation, and immune cell activation. To investigate whether GPBAR1 and CYSLTR1 mutually interact in the development of DILI, we developed an orally active small molecule, CHIN117, that functions as a GPBAR1 agonist and CYSLTR1 antagonist. APPROACH AND RESULTS: RNA-sequencing analysis of liver explants showed that acetaminophen (APAP) intoxication positively modulates the leukotriene pathway, CYSLTR1, 5-lipoxygenase, and 5-lipoxygenase activating protein, whereas GPBAR1 gene expression was unchanged. In mice, acute liver injury induced by orally dosing APAP (500 mg/kg) was severely exacerbated by Gpbar1 gene ablation and attenuated by anti-Cysltr1 small interfering RNA pretreatment. Therapeutic dosing of wild-type mice with CHIN117 reversed the liver damage caused by APAP and modulated up to 1300 genes, including 38 chemokines and receptors, that were not shared by dosing mice with a selective GPBAR1 agonist or CYSLTR1 antagonist. Coexpression of the two receptors was detected in liver sinusoidal endothelial cells (LSECs), monocytes, and Kupffer cells, whereas combinatorial modulation of CYSLTR1 and GPBAR1 potently reversed LSEC/monocyte interactions. CHIN117 reversed liver damage and liver fibrosis in mice administered CCl 4 . CONCLUSIONS: By genetic and pharmacological approaches, we demonstrated that GPBAR1 and CYSLTR1 mutually interact in the development of DILI. A combinatorial approach designed to activate GPBAR1 while inhibiting CYSLTR1 reverses liver injury in models of DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Células Endoteliales/metabolismo , Acetaminofén/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Hepatopatías/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Leucotrienos/metabolismo , Proteínas de Unión al GTP/metabolismo
2.
Pharmacol Res ; 208: 107403, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39265668

RESUMEN

Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic disorders characterized by dysregulated immune response and persistent inflammation. Recent studies suggest that bile acid receptors, particularly GPBAR1, and the transcription factor RORγt play critical roles in modulating intestinal inflammation. This study evaluates the therapeutic potential of PBT002, a dual GPBAR1 agonist and RORγt inverse agonist, in IBD models. The effects of PBT002 were assessed through in vitro and in vivo experiments. Macrophages and T lymphocytes obtained from the buffy coat were exposed to PBT002 to evaluate its immunomodulatory activity. The beneficial effects in vivo were evaluated in mouse models of colitis induced by TNBS, DSS or DSS + IL-23 using also a Gpbar1 knock-out male mice. PBT002 exhibited an EC50 of 1.2 µM for GPBAR1 and an IC50 of 2.8 µM for RORγt. In in vitro, PBT002 modulated macrophage polarization towards an anti-inflammatory M2 phenotype and reduced Th17 cell markers while increasing Treg markers. In the TNBS-induced colitis model, PBT002 reduced weight loss, CDAI, and colon damage, while it modulated cytokine gene expression towards an anti-inflammatory profile. In GPBAR1-/-, the anti-inflammatory effects of PBT002 were attenuated, indicating partial GPBAR1 dependence. RNA sequencing revealed significant modulation of inflammatory pathways by PBT002. In DSS+IL-23 induced colitis, PBT002 mitigated disease exacerbation, reducing pro-inflammatory cytokine levels and immune cell infiltration. In conclusion, PBT002, a GPBAR1 agonist and RORγt inverse agonist, modulates both the innate and adaptive immune responses to reduce inflammation and disease severity in models of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptores Acoplados a Proteínas G , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Masculino , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Agonismo Inverso de Drogas , Células Th17/efectos de los fármacos , Células Th17/inmunología , Sulfato de Dextran , Modelos Animales de Enfermedad
3.
FASEB J ; 36(1): e22060, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862975

RESUMEN

Farnesoid-x-receptor (FXR) agonists, currently trialed in patients with non-alcoholic steatosis (NAFLD), worsen the pro-atherogenic lipid profile and might require a comedication with statin. Here we report that mice feed a high fat/high cholesterol diet (HFD) are protected from developing a pro-atherogenic lipid profile because their ability to dispose cholesterol through bile acids. This protective mechanism is mediated by suppression of FXR signaling in the liver by muricholic acids (MCAs) generated in mice from chenodeoxycholic acid (CDCA). In contrast to CDCA, MCAs are FXR antagonists and promote a CYP7A1-dependent increase of bile acids synthesis. In mice feed a HFD, the treatment with obeticholic acid, a clinical stage FXR agonist, failed to improve the liver histopathology while reduced Cyp7a1 and Cyp8b1 genes expression and bile acids synthesis and excretion. In contrast, treating mice with atorvastatin mitigated liver and vascular injury caused by the HFD while increased the bile acids synthesis and excretion. Atorvastatin increased the percentage of 7α-dehydroxylase expressing bacteria in the intestine promoting the formation of deoxycholic acid and litocholic acid, two GPBAR1 agonists, along with the expression of GPBAR1-regulated genes in the white adipose tissue and colon. In conclusion, present results highlight the central role of bile acids in regulating lipid and cholesterol metabolism in response to atorvastatin and provide explanations for limited efficacy of FXR agonists in the treatment of NAFLD.


Asunto(s)
Atorvastatina/farmacología , Hígado Graso/tratamiento farmacológico , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Enfermedades Vasculares/tratamiento farmacológico , Animales , Bacterias/metabolismo , Ácidos y Sales Biliares/metabolismo , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol en la Dieta/efectos adversos , Colesterol en la Dieta/farmacología , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Hígado Graso/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Esteroide 12-alfa-Hidroxilasa/metabolismo , Enfermedades Vasculares/inducido químicamente , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/microbiología
4.
FASEB J ; 35(1): e21271, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368684

RESUMEN

Autophagy is a highly conserved catabolic process activated by fasting and caloric restriction. FXR, a receptor for primary bile acids, reverses the activity of cAMP-response element binding protein (CREB) on autophagy-related genes (Atg)s and terminates autophagy in the fed state. GPBAR1, a receptor for secondary bile acids, exerts its genomic effects via cAMP-CREB pathway. By genetic and pharmacological approaches, we have obtained evidence that GPBAR1 functions as a positive modulator of autophagy in liver and white adipose tissue (WAT) in fasting. Mechanistically, we found that Gpbar1-/- mice lack the expression of Cyp2c70 a gene essential for generation of muricholic acids which are FXR antagonists, and have an FXR-biased bile acid pool. Because FXR represses autophagy, Gpbar1-/- mice show a defective regulation of autophagy in fasting. BAR501, a selective GPBAR1 agonist, induces autophagy in fed mice. Defective regulation of autophagy in Gpbar1-/- could be reversed by FXR antagonism, while repression of autophagy by feeding was partially abrogated by FXR gene ablation, and FXR activation repressed Atgs in the fast state. BAR501 reversed the negative regulatory effects of feeding and FXR agonism on autophagy and promoted the recruitment of CREB to a CRE on the LC3 promoter. In mice exposed to chronic high caloric intake, GPBAR1 agonism ameliorated insulin sensitivity and induced Atgs expression in the liver and WAT. In summary, GPBAR1 is required for positive regulation of autophagy in fasting and its ligands reverse the repressive effects exerted on liver and WAT autophagy flow by FXR in fed.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Autofagia/efectos de los fármacos , Ácidos Cólicos/farmacología , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G , Animales , Autofagia/genética , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
J Immunol ; 204(9): 2535-2551, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213564

RESUMEN

Drug-induced liver injury caused by acetaminophen (acetyl-para-aminophenol [APAP]) is the main cause of acute liver failure and liver transplantation in several Western countries. Whereas direct toxicity exerted by APAP metabolites is a key determinant for early hepatocytes injury, the recruitment of cells of innate immunity exerts a mechanistic role in disease progression, determining the clinical outcomes. GPBAR1 is a G protein-coupled receptor for secondary bile acids placed at the interface between liver sinusoidal cells and innate immunity. In this report, using genetic and pharmacological approaches, we demonstrate that whereas Gpbar1 gene deletion worsens the severity of liver injury, its pharmacological activation by 6ß-ethyl-3a,7b-dihydroxy-5b-cholan-24-ol rescues mice from liver injury caused by APAP. This protective effect was supported by a robust attenuation of liver recruitment of monocyte-derived macrophages and their repolarization toward an anti-inflammatory phenotype. Macrophage depletion by gadolinium chloride pretreatment abrogated disease development, whereas their reconstitution by spleen-derived macrophage transplantation restored the sensitivity to APAP in a GPBAR1-dependent manner. RNA sequencing analyses demonstrated that GPBAR1 agonism modulated the expression of multiple pathways, including the chemokine CCL2 and its receptor, CCR2. Treating wild-type mice with an anti-CCL2 mAb attenuated the severity of liver injury. We demonstrated that negative regulation of CCL2 production by GPBAR1 agonism was promoter dependent and involved FOXO1. In conclusion, we have shown that GPBAR1 is an upstream modulator of CCL2/CCR2 axis at the sinusoidal cell/macrophage interface, providing a novel target in the treatment of liver damage caused by APAP.


Asunto(s)
Capilares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Quimiocina CCL2/metabolismo , Hígado/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acetaminofén/farmacología , Animales , Ácidos y Sales Biliares/metabolismo , Línea Celular , Línea Celular Tumoral , Proteína Forkhead Box O1/metabolismo , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Ratones , Regiones Promotoras Genéticas/fisiología , Células RAW 264.7 , Transducción de Señal/fisiología , Bazo/efectos de los fármacos , Bazo/metabolismo , Células THP-1
6.
Handb Exp Pharmacol ; 256: 283-295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31201552

RESUMEN

Obeticholic acid (OCA), 6α-ethyl-3α,7α-dihydroxy-5-cholan-24-oic acid, is a semisynthetic derivative of the chenodeoxycholic acid (CDCA, 3α,7α-dihydroxy-5-cholan-24-oic acid), a relatively hydrophobic primary bile acid synthesized in the liver from cholesterol. OCA, also known as 6-ethyl-CDCA or INT-747, was originally described by investigators at the Perugia University in 2002 as a selective ligand for the bile acid sensor, farnesoid-X-receptor (FXR). In addition to FXR and similarly to CDCA, OCA also activates GPBAR1/TGR5, a cell membrane G protein-coupled receptor for secondary bile acids. In 2016, based on the results of phase II studies showing efficacy in reducing the plasma levels of alkaline phosphatase, a surrogate biomarker for disease progression in primary biliary cholangitis (PBC), OCA has gained approval as a second-line treatment for PBC patients nonresponsive to UDCA. The use of OCA in PBC patients associates with several side effects, the most common of which is pruritus, whose incidence is dose-dependent and is extremely high when this agent is used as a monotherapy. Additionally, the use of OCA associates with the increased risk for the development of liver failure in cirrhotic PBC patients. Currently, OCA is investigated for its potential in the treatment of nonalcoholic steatohepatitis (NASH). Phase II and III trials have shown that OCA might attenuate the severity of liver fibrosis in patients with NASH, but it has no efficacy in reversing the steatotic component of the disease, while reduces the circulating levels of HDL-C and increases LDL-C. In summary, OCA has been the first-in-class of FXR ligands advanced to a clinical stage and is now entering its third decade of life, highlighting the potential benefits and risk linked to FXR-targeted therapies.


Asunto(s)
Ácido Quenodesoxicólico/análogos & derivados , Hepatopatías/tratamiento farmacológico , Ácido Quenodesoxicólico/farmacología , Humanos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
7.
Cells ; 13(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39329760

RESUMEN

Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.


Asunto(s)
Cirrosis Hepática Biliar , Humanos , Cirrosis Hepática Biliar/terapia , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/patología , Ácidos y Sales Biliares/metabolismo , Animales , Ácido Ursodesoxicólico/uso terapéutico , Ensayos Clínicos como Asunto , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapéutico
8.
Prog Lipid Res ; 95: 101291, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39122016

RESUMEN

Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.


Asunto(s)
Ácidos y Sales Biliares , Humanos , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/inmunología , Animales , Microbioma Gastrointestinal/inmunología
9.
Front Chem ; 12: 1425867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086986

RESUMEN

BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.

10.
Biochem Pharmacol ; 223: 116134, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38494064

RESUMEN

The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRß subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.


Asunto(s)
Interleucina-6 , Receptores de Citocinas , Humanos , Carcinogénesis , Factor Inhibidor de Leucemia/metabolismo , Receptores de Citocinas/metabolismo , Receptores OSM-LIF
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA