Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 134(8): 990-1005, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38456287

RESUMEN

BACKGROUND: Growing evidence correlated changes in bioactive sphingolipids, particularly S1P (sphingosine-1-phosphate) and ceramides, with coronary artery diseases. Furthermore, specific plasma ceramide species can predict major cardiovascular events. Dysfunction of the endothelium lining lesion-prone areas plays a pivotal role in atherosclerosis. Yet, how sphingolipid metabolism and signaling change and contribute to endothelial dysfunction and atherosclerosis remain poorly understood. METHODS: We used an established model of coronary atherosclerosis in mice, combined with sphingolipidomics, RNA-sequencing, flow cytometry, and immunostaining to investigate the contribution of sphingolipid metabolism and signaling to endothelial cell (EC) activation and dysfunction. RESULTS: We demonstrated that hemodynamic stress induced an early metabolic rewiring towards endothelial sphingolipid de novo biosynthesis, favoring S1P signaling over ceramides as a protective response. This finding is a paradigm shift from the current belief that ceramide accrual contributes to endothelial dysfunction. The enzyme SPT (serine palmitoyltransferase) commences de novo biosynthesis of sphingolipids and is inhibited by NOGO-B (reticulon-4B), an ER membrane protein. Here, we showed that NOGO-B is upregulated by hemodynamic stress in myocardial EC of ApoE-/- mice and is expressed in the endothelium lining coronary lesions in mice and humans. We demonstrated that mice lacking NOGO-B specifically in EC (Nogo-A/BECKOApoE-/-) were resistant to coronary atherosclerosis development and progression, and mortality. Fibrous cap thickness was significantly increased in Nogo-A/BECKOApoE-/- mice and correlated with reduced necrotic core and macrophage infiltration. Mechanistically, the deletion of NOGO-B in EC sustained the rewiring of sphingolipid metabolism towards S1P, imparting an atheroprotective endothelial transcriptional signature. CONCLUSIONS: These data demonstrated that hemodynamic stress induced a protective rewiring of sphingolipid metabolism, favoring S1P over ceramide. NOGO-B deletion sustained the rewiring of sphingolipid metabolism toward S1P protecting EC from activation under hemodynamic stress and refraining coronary atherosclerosis. These findings also set forth the foundation for sphingolipid-based therapeutics to limit atheroprogression.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Animales , Ratones , Ceramidas/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/prevención & control , Proteínas Nogo , Esfingolípidos/metabolismo , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Endotelio/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Apolipoproteínas E
2.
EMBO Rep ; 24(1): e54689, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36408842

RESUMEN

Disruption of sphingolipid homeostasis and signaling has been implicated in diabetes, cancer, cardiometabolic, and neurodegenerative disorders. Yet, mechanisms governing cellular sensing and regulation of sphingolipid homeostasis remain largely unknown. In yeast, serine palmitoyltransferase, catalyzing the first and rate-limiting step of sphingolipid de novo biosynthesis, is negatively regulated by Orm1 and 2. Lowering sphingolipids triggers Orms phosphorylation, upregulation of serine palmitoyltransferase activity and sphingolipid de novo biosynthesis. However, mammalian orthologs ORMDLs lack the N-terminus hosting the phosphosites. Thus, which sphingolipid(s) are sensed by the cells, and mechanisms of homeostasis remain largely unknown. Here, we identify sphingosine-1-phosphate (S1P) as key sphingolipid sensed by cells via S1PRs to maintain homeostasis. The increase in S1P-S1PR signaling stabilizes ORMDLs, restraining SPT activity. Mechanistically, the hydroxylation of ORMDLs at Pro137 allows a constitutive degradation of ORMDLs via ubiquitin-proteasome pathway, preserving SPT activity. Disrupting S1PR/ORMDL axis results in ceramide accrual, mitochondrial dysfunction, impaired signal transduction, all underlying endothelial dysfunction, early event in the onset of cardio- and cerebrovascular diseases. Our discovery may provide the molecular basis for therapeutic intervention restoring sphingolipid homeostasis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Esfingolípidos , Animales , Humanos , Esfingolípidos/metabolismo , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Proteínas de la Membrana/metabolismo , Homeostasis , Saccharomyces cerevisiae/metabolismo , Mamíferos/metabolismo
3.
Adv Exp Med Biol ; 1372: 87-117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35503177

RESUMEN

The endothelium, inner layer of blood vessels, constitutes a metabolically active paracrine, endocrine, and autocrine organ, able to sense the neighboring environment and exert a variety of biological functions important to preserve the health of vasculature, tissues, and organs. Sphingolipids are both fundamental structural components of the eukaryotic membranes and signaling molecules regulating a variety of biological functions. Ceramide and sphingosine-1-phosphate (S1P), bioactive sphingolipids, have emerged as important regulators of cardiovascular functions in health and disease. In this review we discuss recent insights into the role of ceramide and S1P biosynthesis and signaling in regulating endothelial cell functions, in health and diseases. We also highlight advances into the mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo sphingolipid biosynthesis, with an emphasis on its inhibitors, ORMDL and NOGO-B. Understanding the molecular mechanisms regulating the sphingolipid de novo biosynthesis may provide the foundation for therapeutic modulation of this pathway in a variety of conditions, including cardiovascular diseases, associated with derangement of this pathway.


Asunto(s)
Ceramidas , Esfingolípidos , Ceramidas/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo
4.
J Vasc Res ; 57(6): 367-375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32937637

RESUMEN

Aortic aneurysms and dissections are silent and lethal conditions, whose pathogenesis remains incompletely understood. Although angiotensin II (AngII)-infused ApoE-/- mice have been widely used to study aortic aneurysm and dissection, early morphofunctional alterations preceding the onset of these conditions remain unknown. The goal of this study was to unveil early morphofunctional changes underlying the onset of aneurysm and dissection. At 3 days post-AngII infusion, suprarenal abdominal aorta presented significant volumetric dilatation and microstructural damage. Ex vivo assessment of vascular reactivity of the suprarenal dissection-prone aorta and its side branches, showed an endothelial and contractile dysfunctions that were severe in the suprarenal aorta, moderate distally, and absent in the side branches, mirroring the susceptibility to dissection of these different vascular segments. Early and specific morphofunctional changes of the suprarenal aorta may contribute to the regional onset of aortic aneurysm and dissection by exacerbating the biomechanical burden arising from its side branches.


Asunto(s)
Angiotensina II , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/patología , Disección Aórtica/patología , Remodelación Vascular , Disección Aórtica/inducido químicamente , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/fisiopatología , Animales , Aorta Abdominal/diagnóstico por imagen , Aorta Abdominal/fisiopatología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/fisiopatología , Aortografía , Angiografía por Tomografía Computarizada , Dilatación Patológica , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Factores de Tiempo , Vasoconstricción , Microtomografía por Rayos X
6.
Angiogenesis ; 22(2): 237-250, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30446855

RESUMEN

The coronary vasculature is crucial for normal heart function, yet much remains to be learned about its development, especially the maturation of coronary arterial endothelium. Here, we show that endothelial inactivation of ADAM10, a key regulator of Notch signaling, leads to defects in coronary arterial differentiation, as evidenced by dysregulated genes related to Notch signaling and arterial identity. Moreover, transcriptome analysis indicated reduced EGFR signaling in A10ΔEC coronary endothelium. Further analysis revealed that A10ΔEC mice have enlarged dysfunctional hearts with abnormal myocardial compaction, and increased expression of venous and immature endothelium markers. These findings provide the first evidence for a potential role for endothelial ADAM10 in cardioprotective homeostatic EGFR signaling and implicate ADAM10/Notch signaling in coronary arterial cell specification, which is vital for normal heart development and function. The ADAM10/Notch signaling pathway thus emerges as a potential therapeutic target for improving the regenerative capacity and maturation of the coronary vasculature.


Asunto(s)
Proteína ADAM10/fisiología , Secretasas de la Proteína Precursora del Amiloide/fisiología , Diferenciación Celular/genética , Vasos Coronarios/fisiología , Células Endoteliales/fisiología , Endotelio Vascular/fisiología , Proteínas de la Membrana/fisiología , Animales , Vasos Coronarios/citología , Vasos Coronarios/crecimiento & desarrollo , Endotelio Vascular/crecimiento & desarrollo , Femenino , Corazón/crecimiento & desarrollo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética
7.
Mol Cell ; 39(3): 433-43, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20705244

RESUMEN

Mammalian target of rapamycin (mTOR) is an important mediator of phosphoinositol-3-kinase (PI3K) signaling. PI3K signaling regulates B cell development, homeostasis, and immune responses. However, the function and molecular mechanism of mTOR-mediated PI3K signaling in B cells has not been fully elucidated. Here we show that Sin1, an essential component of mTOR complex 2 (mTORC2), regulates B cell development. Sin1 deficiency results in increased IL-7 receptor (il7r) and RAG recombinase (rag1 and rag2) gene expression, leading to enhanced pro-B cell survival and augmented V(D)J recombinase activity. We further show that Akt2 specifically mediates the Sin1-mTORC2 dependent suppression of il7r and rag gene expression in B cells by regulating FoxO1 phosphorylation. Finally, we demonstrate that the mTOR inhibitor rapamycin induces rag expression and promotes V(D)J recombination in B cells. Our study reveals that the Sin1/mTORC2-Akt2 signaling axis is a key regulator of FoxO1 transcriptional activity in B cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfocitos B/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Interleucina-7/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Linfocitos B/citología , Línea Celular Transformada , Proteínas de Unión al ADN/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Reordenamiento Génico de Linfocito B/fisiología , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Receptores de Interleucina-7/genética , Transducción de Señal/fisiología , Factores de Transcripción
8.
FASEB J ; 30(6): 2351-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26956418

RESUMEN

Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused by decreased plasma levels of S1P and reduced S1P1 stimulation. In a carrageenan-induced model of inflammation, Apom(-/-) mice had increased vascular leakage compared with that in WT mice. Adenoviral overexpression of ApoM in Apom(-/-) mice decreased the vascular leakage compared to adenoviral overexpression of green fluorescent protein. The study suggests that vascular leakage of albumin-sized particles in ApoM deficiency is S1P- and S1P1-dependent and this dependency exacerbates the response to inflammatory stimuli.-Christensen, P. M., Liu, C. H., Swendeman, S. L., Obinata, H., Qvortrup, K., Nielsen, L B., Hla, T., Di Lorenzo, A., Christoffersen, C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1.


Asunto(s)
Apolipoproteínas/metabolismo , Permeabilidad Capilar/fisiología , Endotelio Vascular/fisiología , Receptores de Lisoesfingolípidos/metabolismo , Animales , Apolipoproteínas/genética , Apolipoproteínas M , Femenino , Regulación de la Expresión Génica/fisiología , Inflamación , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Esfingosina-1-Fosfato
9.
Arterioscler Thromb Vasc Biol ; 36(2): 370-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26715683

RESUMEN

OBJECTIVE: Palmitoylation, the reversible addition of the lipid palmitate to a cysteine, can alter protein localization, stability, and function. The ZDHHC family of protein acyl transferases catalyzes palmitoylation of numerous proteins. The role of ZDHHC enzymes in intact tissue and in vivo is largely unknown. Herein, we characterize vascular functions in a mouse that expresses a nonfunctional ZDHHC21 (F233Δ). APPROACH AND RESULTS: Physiological studies of isolated aortae and mesenteric arteries from F233Δ mice revealed an unexpected defect in responsiveness to phenylephrine, an α1 adrenergic receptor agonist. In vivo, F233Δ mice displayed a blunted response to infusion of phenylephrine, and they were found to have elevated catecholamine levels and elevated vascular α1 adrenergic receptor gene expression. Telemetry studies showed that the F233Δ mice were tachycardic and hypotensive at baseline, consistent with diminished vascular tone. In biochemical studies, ZDHHC21 was shown to palmitoylate the α1D adrenoceptor and to interact with it in a molecular complex, thus suggesting a possible molecular mechanism by which the receptor can be regulated by ZDHHC21. CONCLUSIONS: Together, the data support a model in which ZDHHC21 F233Δ diminishes the function of vascular α1 adrenergic receptors, leading to reduced vascular tone, which manifests in vivo as hypotension and tachycardia. This is to our knowledge the first demonstration of a ZDHHC isoform affecting vascular function in vivo and identifies a novel molecular mode of regulation of vascular tone and blood pressure.


Asunto(s)
Aciltransferasas/metabolismo , Aorta/enzimología , Hemodinámica , Arterias Mesentéricas/enzimología , Receptores Adrenérgicos alfa 1/metabolismo , Aciltransferasas/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Aorta/efectos de los fármacos , Aorta/fisiopatología , Presión Sanguínea , Relación Dosis-Respuesta a Droga , Epinefrina/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Genotipo , Células HEK293 , Frecuencia Cardíaca , Hemodinámica/efectos de los fármacos , Humanos , Hipotensión/enzimología , Hipotensión/genética , Hipotensión/fisiopatología , Lipoilación , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación , Norepinefrina/metabolismo , Fenotipo , Fenilefrina/farmacología , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 1/genética , Transducción de Señal , Taquicardia/enzimología , Taquicardia/genética , Taquicardia/fisiopatología , Factores de Tiempo , Transfección , Vasoconstricción
10.
Arterioscler Thromb Vasc Biol ; 36(3): 442-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26800562

RESUMEN

OBJECTIVE: We hypothesized that the hypoxia-inducible factor (HIF) 1α in vascular smooth muscle contributes to the development of atherosclerosis, and links intravascular pressure to this process. APPROACH AND RESULTS: Transverse aortic constriction was used to create high-pressure vascular segments in control, apolipoprotein E (ApoE)(-/-), smooth muscle-HIF1α(-/-), and ApoE(-/-)×smooth muscle-HIF1α(-/-) double-knockout mice. Transverse aortic constriction selectively induced atherosclerosis in high-pressure vascular segments in young ApoE(-/-) mice on normal chow, including coronary plaques within 1 month. Concomitant deletion of HIF1α from smooth muscle significantly reduced vascular inflammation, and attenuated atherosclerosis. CONCLUSIONS: HIF1α in vascular smooth muscle plays an important role in the pathogenesis of atherosclerosis, and may provide a mechanistic link between blood pressure, vascular inflammation, and lipid deposition.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Presión Arterial , Aterosclerosis/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Músculo Liso Vascular/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiopatología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Enfermedades de la Aorta/prevención & control , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/fisiopatología , Aterosclerosis/prevención & control , Velocidad del Flujo Sanguíneo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ligadura , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Músculo Liso Vascular/cirugía , Placa Aterosclerótica , Flujo Sanguíneo Regional , Transducción de Señal , Factores de Tiempo
11.
J Pharmacol Exp Ther ; 358(2): 359-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27317800

RESUMEN

Initially discovered as abundant components of eukaryotic cell membranes, sphingolipids are now recognized as important bioactive signaling molecules that modulate a variety of cellular functions, including those relevant to cancer and immunologic, inflammatory, and cardiovascular disorders. In this review, we discuss recent advances in our understanding of the role of sphingosine-1-phosphate (S1P) receptors in the regulation of vascular function, and focus on how de novo biosynthesized sphingolipids play a role in blood pressure homeostasis. The therapeutic potential of new drugs that target S1P signaling is also discussed.


Asunto(s)
Presión Sanguínea , Homeostasis , Lisofosfolípidos/biosíntesis , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Endotelio Vascular/metabolismo , Humanos , Esfingosina/biosíntesis , Esfingosina/metabolismo , Vasodilatación
12.
J Cell Sci ; 126(Pt 24): 5541-52, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24046447

RESUMEN

Transient disruption of endothelial adherens junctions and cytoskeletal remodeling are responsible for increases in vascular permeability induced by inflammatory stimuli and vascular endothelial growth factor (VEGF). Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is crucial for VEGF-induced changes in permeability in vivo; however, the molecular mechanism by which endogenous NO modulates endothelial permeability is not clear. Here, we show that the lack of eNOS reduces VEGF-induced permeability, an effect mediated by enhanced activation of the Rac GTPase and stabilization of cortical actin. The loss of NO increased the recruitment of the Rac guanine-nucleotide-exchange factor (GEF) TIAM1 to adherens junctions and VE-cadherin (also known as cadherin 5), and reduced Rho activation and stress fiber formation. In addition, NO deficiency reduced VEGF-induced VE-cadherin phosphorylation and impaired the localization, but not the activation, of c-Src to cell junctions. The physiological role of eNOS activation is clear given that VEGF-, histamine- and inflammation-induced vascular permeability is reduced in mice bearing a non-phosphorylatable knock-in mutation of the key eNOS phosphorylation site S1176. Thus, NO is crucial for Rho GTPase-dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Endotelio Vascular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/fisiología , Uniones Adherentes/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Permeabilidad Capilar , Células Cultivadas , Células Endoteliales/enzimología , Endotelio Vascular/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Fibras de Estrés/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Factor A de Crecimiento Endotelial Vascular/fisiología , Familia-src Quinasas/metabolismo
13.
Am J Pathol ; 184(2): 376-81, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24262755

RESUMEN

Renin is a newly discovered constituent of mast cells. Given that mast cells play a major role in IgE-mediated allergic hypersensitivity, we investigated whether activation of the high-affinity IgE receptor FcεRI elicits release of mast-cell renin. Cross-linking of FcεRI on the surface of mature bone marrow-derived mast cells elicited release of enzymatically active renin protein. The angiotensin I-forming activity of the renin protein was completely blocked by the selective renin inhibitor BILA 2157, which excludes formation of angiotensin I by proteases other than renin. FcεRI-mediated mast-cell renin release was inhibited by dexamethasone and potentiated by the proinflammatory mediator PGE2. Furthermore, cross-linking of mast-cell FcεRI in ex vivo murine hearts passively sensitized with monoclonal anti-DNP IgE also resulted in mast-cell degranulation and overflow of renin. Our findings indicate that IgE-mediated allergic hypersensitivity provokes release of renin from both cultured and resident cardiac mast cells, a process likely to be exacerbated in a chronic inflammatory background. Given the widespread distribution of mast cells, and the presence of angiotensinogen and angiotensin-converting enzyme in many tissues, renin release in immediate hypersensitivity reactions could result in local angiotensin II generation and multiorgan dysfunctions.


Asunto(s)
Mastocitos/enzimología , Mastocitos/metabolismo , Receptores de IgE/metabolismo , Renina/metabolismo , Animales , Degranulación de la Célula/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Dexametasona/farmacología , Dinoprostona/farmacología , Histamina/metabolismo , Técnicas In Vitro , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(43): 17478-83, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23047702

RESUMEN

Although intimately positioned between metabolic substrates in the bloodstream and the tissue parenchymal cells that require these substrates, a major role of the vascular endothelium in the regulation of tissue metabolism has not been widely appreciated. We hypothesized that via control of transendothelial glucose transport and contributing paracrine mechanisms the endothelium plays a major role in regulating organ and tissue glucose metabolism. We further hypothesized that the hypoxia-inducible factor -1α (HIF-1α) plays an important role in coordinating these endothelial functions. To test these hypotheses, we generated mice with endothelial cell-specific deletion of HIF-1α. Loss of HIF in the endothelium resulted in significantly increased fasting blood glucose levels, a blunted insulin response with delayed glucose clearance from the blood after i.v. loading, and significantly decreased glucose uptake into the brain and heart. Endothelial HIF-1α knockout mice also exhibited a reduced cerebrospinal fluid/blood glucose ratio, a finding consistent with reduced transendothelial glucose transport and a diagnostic criterion for the Glut1 deficiency genetic syndrome. Endothelial cells from these mice demonstrated decreased Glut1 levels and reduced glucose uptake that was reversed by forced expression of Glut1. These data strongly support an important role of the vascular endothelium in determining whole-organ glucose metabolism and indicate that HIF-1α is a critical mediator of this function.


Asunto(s)
Glucemia/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Miocardio/metabolismo , Animales , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Noqueados
15.
EMBO Mol Med ; 16(6): 1352-1378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724625

RESUMEN

Mutations in CHCHD10, a mitochondrial protein with undefined functions, are associated with autosomal dominant mitochondrial diseases. Chchd10 knock-in mice harboring a heterozygous S55L mutation (equivalent to human pathogenic S59L) develop a fatal mitochondrial cardiomyopathy caused by CHCHD10 aggregation and proteotoxic mitochondrial integrated stress response (mtISR). In mutant hearts, mtISR is accompanied by a metabolic rewiring characterized by increased reliance on glycolysis rather than fatty acid oxidation. To counteract this metabolic rewiring, heterozygous S55L mice were subjected to chronic high-fat diet (HFD) to decrease insulin sensitivity and glucose uptake and enhance fatty acid utilization in the heart. HFD ameliorated the ventricular dysfunction of mutant hearts and significantly extended the survival of mutant female mice affected by severe pregnancy-induced cardiomyopathy. Gene expression profiles confirmed that HFD increased fatty acid utilization and ameliorated cardiomyopathy markers. Importantly, HFD also decreased accumulation of aggregated CHCHD10 in the S55L heart, suggesting activation of quality control mechanisms. Overall, our findings indicate that metabolic therapy can be effective in mitochondrial cardiomyopathies associated with proteotoxic stress.


Asunto(s)
Cardiomiopatías , Dieta Alta en Grasa , Proteínas Mitocondriales , Animales , Dieta Alta en Grasa/efectos adversos , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/dietoterapia , Femenino , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ácidos Grasos/metabolismo , Modelos Animales de Enfermedad , Embarazo
16.
Blood ; 117(7): 2284-95, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21183689

RESUMEN

The reticulon (Rtn) family of proteins are localized primarily to the endoplasmic reticulum (ER) of most cells. The Rtn-4 family, (aka Nogo) consists of 3 splice variants of a common gene called Rtn-4A, Rtn-4B, and Rtn-4C. Recently, we identified the Rtn-4B (Nogo-B) protein in endothelial and smooth muscle cells of the vessel wall, and showed that Nogo-B is a regulator of cell migration in vitro and vascular remodeling and angiogenesis in vivo. However, the role of Nogo-B in inflammation is still largely unknown. In the present study, we use 2 models of inflammation to show that endothelial Nogo-B regulates leukocyte transmigration and intercellular adhesion molecule-1 (ICAM-1)-dependent signaling. Mice lacking Nogo-A/B have a marked reduction in neutrophil and monocyte recruitment to sites of inflammation, while Nogo-A/B(-/-) mice engrafted with wild-type (WT) bone marrow still exhibit impaired inflammation compared with WT mice engrafted with Nogo-A/B(-/-) bone marrow, arguing for a critical role of host Nogo in this response. Using human leukocytes and endothelial cells, we show mechanistically that the silencing of Nogo-B with small interfering RNA (siRNA) impairs the transmigration of neutrophils and reduces ICAM-1-stimulated phosphorylation of vascular endothelial-cell cadherin (VE-cadherin). Our results reveal a novel role of endothelial Nogo-B in basic immune functions and provide a key link in the molecular network governing endothelial-cell regulation of diapedesis.


Asunto(s)
Inflamación/etiología , Molécula 1 de Adhesión Intercelular/fisiología , Leucocitos/fisiología , Proteínas de la Mielina/fisiología , Animales , Antígenos CD/fisiología , Cadherinas/fisiología , Carragenina/toxicidad , Movimiento Celular/fisiología , Células Endoteliales/patología , Células Endoteliales/fisiología , Quinasa 2 de Adhesión Focal/metabolismo , Humanos , Técnicas In Vitro , Inflamación/patología , Inflamación/fisiopatología , Leucocitos/patología , Macrófagos/patología , Macrófagos/fisiología , Masculino , Ratones , Ratones Congénicos , Ratones Noqueados , Monocitos/patología , Monocitos/fisiología , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/deficiencia , Proteínas de la Mielina/genética , Neutrófilos/patología , Neutrófilos/fisiología , Proteínas Nogo , Fosforilación , ARN Interferente Pequeño/genética , Transducción de Señal , Familia-src Quinasas/metabolismo
17.
bioRxiv ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36865125

RESUMEN

Mutations in CHCHD10 , a mitochondrial protein with undefined functions, are associated with autosomal dominant mitochondrial diseases. Chchd10 knock-in mice harboring a heterozygous S55L mutation (equivalent to human pathogenic S59L) develop a fatal mitochondrial cardiomyopathy caused by CHCHD10 aggregation and proteotoxic mitochondrial integrated stress response (mtISR). In mutant hearts, mtISR is accompanied by a metabolic rewiring characterized by increased reliance on glycolysis rather than fatty acid oxidation. To counteract this metabolic rewiring, heterozygous S55L mice were subjected to chronic high fat diet (HFD) to decrease insulin sensitivity and glucose uptake and enhance fatty acid utilization in the heart. HFD ameliorated the ventricular dysfunction of mutant hearts and significantly extended the survival of mutant female mice affected by severe pregnancy-induced cardiomyopathy. Gene expression profiles confirmed that HFD increased fatty acid utilization and ameliorated cardiomyopathy markers. Importantly, HFD also decreased accumulation of aggregated CHCHD10 in the S55L heart, suggesting activation of quality control mechanisms. Overall, our findings indicate that metabolic therapy can be effective in mitochondrial cardiomyopathies associated with proteotoxic stress.

18.
Cardiovasc Res ; 119(2): 506-519, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35815623

RESUMEN

AIMS: Growing evidence correlate the accrual of the sphingolipid ceramide in plasma and cardiac tissue with heart failure (HF). Regulation of sphingolipid metabolism in the heart and the pathological impact of its derangement remain poorly understood. Recently, we discovered that Nogo-B, a membrane protein of endoplasmic reticulum, abundant in the vascular wall, down-regulates the sphingolipid de novo biosynthesis via serine palmitoyltransferase (SPT), first and rate liming enzyme, to impact vascular functions and blood pressure. Nogo-A, a splice isoform of Nogo, is transiently expressed in cardiomyocyte (CM) following pressure overload. Cardiac Nogo is up-regulated in dilated and ischaemic cardiomyopathies in animals and humans. However, its biological function in the heart remains unknown. METHODS AND RESULTS: We discovered that Nogo-A is a negative regulator of SPT activity and refrains ceramide de novo biosynthesis in CM exposed to haemodynamic stress, hence limiting ceramide accrual. At 7 days following transverse aortic constriction (TAC), SPT activity was significantly up-regulated in CM lacking Nogo-A and correlated with ceramide accrual, particularly very long-chain ceramides, which are the most abundant in CM, resulting in the suppression of 'beneficial' autophagy. At 3 months post-TAC, mice lacking Nogo-A in CM showed worse pathological cardiac hypertrophy and dysfunction, with ca. 50% mortality rate. CONCLUSION: Mechanistically, Nogo-A refrains ceramides from accrual, therefore preserves the 'beneficial' autophagy, mitochondrial function, and metabolic gene expression, limiting the progression to HF under sustained stress.


Asunto(s)
Insuficiencia Cardíaca , Esfingolípidos , Humanos , Ratones , Animales , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Esfingolípidos/metabolismo , Ceramidas/metabolismo , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(34): 14552-7, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19622728

RESUMEN

Akt1 is implicated in cell metabolism, survival migration, and gene expression; however, little is known about the role of specific Akt isoforms during inflammation in vivo. Thus, we directly explored the roles of the isoforms Akt1 and Akt2 in acute inflammation models by using mice deficient in either Akt1 or Akt2. Akt1(-/-) mice showed a markedly reduced edema versus Akt2(-/-) and WT controls, and the reduced inflammation was associated with a dramatic decrease in neutrophil and monocyte infiltration. The loss of Akt1 did not affect leukocyte functions in vitro, and bone marrow transplant experiments suggest that host Akt1 regulates leukocyte emigration into inflamed tissues. Moreover, carrageenan-induced edema and the direct propermeability actions of bradykinin and histamine were reduced dramatically in Akt1(-/-) versus WT mice. These findings are supported by in vitro experiments showing that Akt1 deficiency or blockade of nitric oxide synthase markedly reduces histamine-stimulated changes in transendothelial electrical resistance of microvascular endothelial cells. Collectively, these results suggest that Akt1 is necessary for acute inflammation and exerts its actions primarily via regulation of vascular permeability, leading to edema and leukocyte extravasation.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Histamina/farmacología , Inflamación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad Aguda , Animales , Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Western Blotting , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Carragenina/toxicidad , Movimiento Celular/efectos de los fármacos , Edema/inducido químicamente , Edema/genética , Edema/metabolismo , Expresión Génica , Inmunohistoquímica , Inflamación/inducido químicamente , Inflamación/genética , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/citología , Monocitos/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Peroxidasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Am Heart Assoc ; 10(14): e021261, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34240614

RESUMEN

Background Most of the circulating sphingosine-1-phosphate (S1P) is bound to ApoM (apolipoprotein M) of high-density lipoprotein (HDL) and mediates many beneficial effects of HDL on the vasculature via G protein-coupled S1P receptors. HDL-bound S1P is decreased in atherosclerosis, myocardial infarction, and diabetes mellitus. In addition to being the target, the endothelium is a source of S1P, which is transported outside of the cells by Spinster-2, contributing to circulating S1P as well as to local signaling. Mice lacking endothelial S1P receptor 1 are hypertensive, suggesting a vasculoprotective role of S1P signaling. This study investigates the role of endothelial-derived S1P and ApoM-bound S1P in regulating vascular tone and blood pressure. Methods and Results ApoM knockout (ApoM KO) mice and mice lacking endothelial Spinster-2 (ECKO-Spns2) were infused with angiotensin II for 28 days. Blood pressure, measured by telemetry and tail-cuff, was significantly increased in both ECKO-Spns2 and ApoM KO versus control mice, at baseline and following angiotensin II. Notably, ECKO-Spns2 presented an impaired vasodilation to flow and blood pressure dipping, which is clinically associated with increased risk for cardiovascular events. In hypertension, both groups presented reduced flow-mediated vasodilation and some degree of impairment in endothelial NO production, which was more evident in ECKO-Spns2. Increased hypertension in ECKO-Spns2 and ApoM KO mice correlated with worsened cardiac hypertrophy versus controls. Conclusions Our study identifies an important role for Spinster-2 and ApoM-HDL in blood pressure homeostasis via S1P-NO signaling and dissects the pathophysiological impact of endothelial-derived S1P and ApoM of HDL-bound S1P in hypertension and cardiac hypertrophy.


Asunto(s)
Proteínas de Transporte de Anión/genética , Apolipoproteínas M/genética , Endotelio Vascular/fisiopatología , Regulación de la Expresión Génica , Hipertensión/genética , Lisofosfolípidos/genética , Esfingosina/análogos & derivados , Rigidez Vascular/fisiología , Animales , Proteínas de Transporte de Anión/biosíntesis , Apolipoproteínas M/biosíntesis , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Lisofosfolípidos/biosíntesis , Masculino , Ratones , Ratones Noqueados , ARN/genética , Esfingosina/biosíntesis , Esfingosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA