Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2317083121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38602904

RESUMEN

The Trojan exon method, which makes use of intronically inserted T2A-Gal4 cassettes, has been widely used in Drosophila to create thousands of gene-specific Gal4 driver lines. These dual-purpose lines provide genetic access to specific cell types based on their expression of a native gene while simultaneously mutating one allele of the gene to enable loss-of-function analysis in homozygous animals. While this dual use is often an advantage, the truncation mutations produced by Trojan exons are sometimes deleterious in heterozygotes, perhaps by creating translation products with dominant negative effects. Such mutagenic effects can cause developmental lethality as has been observed with genes encoding essential transcription factors. Given the importance of transcription factors in specifying cell type, alternative techniques for generating specific Gal4 lines that target them are required. Here, we introduce a modified Trojan exon method that retains the targeting fidelity and plug-and-play modularity of the original method but mitigates its mutagenic effects by exploiting the self-splicing capabilities of split inteins. "Split Intein Trojan exons" (siTrojans) ensure that the two truncation products generated from the interrupted allele of the native gene are trans-spliced to create a full-length native protein. We demonstrate the efficacy of siTrojans by generating a comprehensive toolkit of Gal4 and Split Gal4 lines for the segmentally expressed Hox transcription factors and illustrate their use in neural circuit mapping by targeting neurons according to their position along the anterior-posterior axis. Both the method and the Hox gene-specific toolkit introduced here should be broadly useful.


Asunto(s)
Genes Homeobox , Inteínas , Animales , Inteínas/genética , Empalme de Proteína , Factores de Transcripción/genética , Drosophila/genética , Exones/genética
2.
Nature ; 587(7834): 455-459, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116314

RESUMEN

Reproduction induces increased food intake across females of many animal species1-4, providing a physiologically relevant paradigm for the exploration of appetite regulation. Here, by examining the diversity of enteric neurons in Drosophila melanogaster, we identify a key role for gut-innervating neurons with sex- and reproductive state-specific activity in sustaining the increased food intake of mothers during reproduction. Steroid and enteroendocrine hormones functionally remodel these neurons, which leads to the release of their neuropeptide onto the muscles of the crop-a stomach-like organ-after mating. Neuropeptide release changes the dynamics of crop enlargement, resulting in increased food intake, and preventing the post-mating remodelling of enteric neurons reduces both reproductive hyperphagia and reproductive fitness. The plasticity of enteric neurons is therefore key to reproductive success. Our findings provide a mechanism to attain the positive energy balance that sustains gestation, dysregulation of which could contribute to infertility or weight gain.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Ingestión de Alimentos/fisiología , Ingestión de Energía/fisiología , Madres , Neuronas/metabolismo , Reproducción/fisiología , Estructuras Animales/citología , Estructuras Animales/inervación , Estructuras Animales/metabolismo , Animales , Regulación del Apetito/fisiología , Femenino , Hiperfagia/metabolismo , Masculino , Neuropéptidos/metabolismo
4.
J Neurosci ; 32(3): 880-9, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22262886

RESUMEN

The neural circuits that mediate behavioral choices must not only weigh internal demands and environmental circumstances, but also select and implement specific actions, including associated visceral or neuroendocrine functions. Coordinating these multiple processes suggests considerable complexity. As a consequence, even circuits that support simple behavioral decisions remain poorly understood. Here we show that the environmentally sensitive wing expansion decision of adult fruit flies is coordinated by a single pair of neuromodulatory neurons with command-like function. Targeted suppression of these neurons using the Split Gal4 system abrogates the fly's ability to expand its wings in the face of environmental challenges, while stimulating them forces expansion by coordinately activating both motor and neuroendocrine outputs. The arbitration and implementation of the wing expansion decision by this neuronal pair may illustrate a general strategy by which neuromodulatory neurons orchestrate behavior. Interestingly, the decision network exhibits a plasticity that is unmasked under conducive environmental conditions in flies lacking the function of the command-like neuromodulatory neurons. Such flies can often expand their wings using a motor program distinct from that of wild-type animals and controls. This compensatory program may be the vestige of an ancestral, environmentally insensitive program used for wing expansion that existed before the evolution of the environmentally adaptive program currently used by Drosophila and other cyclorrhaphan flies.


Asunto(s)
Adaptación Biológica/fisiología , Sistema Nervioso Central/citología , Conducta de Elección/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Adaptación Biológica/genética , Animales , Animales Modificados Genéticamente , Conducta Animal , Sistema Nervioso Central/fisiología , Drosophila , Proteínas de Drosophila/genética , Ambiente , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Actividad Motora/genética , Vías Nerviosas , Estimulación Física , Factores de Transcripción/genética , Alas de Animales/fisiología
5.
Mol Cell Neurosci ; 45(1): 75-83, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20550966

RESUMEN

Shal K(+) (K(v)4) channels in mammalian neurons have been shown to be localized exclusively to somato-dendritic regions of neurons, where they function as key determinants of dendritic excitability. To gain insight into the mechanisms underlying dendritic localization of K(v)4 channels, we use Drosophila melanogaster as our model system. We show that Shal K(+) channels display a conserved somato-dendritic localization in vivo in Drosophila. From a yeast-2-hybrid screen, we identify the novel interactor, SIDL (for Shal Interactor of Di-Leucine Motif), as the first target protein reported to bind the highly conserved di-leucine motif (LL-motif) implicated in dendritic targeting. We show that SIDL is expressed primarily in the nervous system, co-localizes with GFP-Shal channels in neurons, and interacts specifically with the LL-motif of Drosophila and mouse Shal channels. We disrupt the Shal-SIDL interaction by mutating the LL-motif on Shal channels, and show that Shal K(+) channels are then mislocalized to some, but not all, axons in vivo. These results suggest that there are multiple mechanisms underlying Shal K(+) channel targeting, one of which depends on the LL-motif. The identification of SIDL may provide the first step for future investigation into the molecular machinery regulating the LL-motif-dependent targeting of K(+) channels.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Canales de Potasio Shal/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Humanos , Ratones , Neuronas/citología , Neuronas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales de Potasio Shal/genética , Técnicas del Sistema de Dos Híbridos
6.
J Neurosci ; 29(11): 3343-53, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19295141

RESUMEN

After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of N(CCAP), a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally sensitive decision network to a command-like network that initiates a fixed action pattern. Because N(CCAP) mediates environmentally insensitive ecdysis-related behaviors in Drosophila development before adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop.


Asunto(s)
Conducta de Elección/fisiología , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuropéptidos/fisiología , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Animales , Toma de Decisiones/fisiología , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Ambiente , Marcación de Gen , Hormonas de Invertebrados/metabolismo , Red Nerviosa/fisiología , Ratas , Canales Catiónicos TRPM/biosíntesis
7.
Mol Cell Neurosci ; 42(1): 33-44, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19463952

RESUMEN

Shal K+ (K(v)4) channels across species carry the major A-type K+ current present in neurons. Shal currents are activated by small EPSPs and modulate post-synaptic potentials, backpropagation of action potentials, and induction of LTP. Fast inactivation of Shal channels regulates the impact of this post-synaptic modulation. Here, we introduce SKIP3, as the first protein interactor of Drosophila Shal K+ channels. The SKIP gene encodes three isoforms with multiple protein-protein interaction domains. SKIP3 is nervous system specific and co-localizes with Shal channels in neuronal cell bodies, and in puncta along processes. Using a genetic deficiency of SKIP, we show that the proportion of neurons displaying a very fast inactivation, consistent with Shal channels exclusively in a "fast" gating mode, is increased in the absence of SKIP3. As a scaffold-like protein, SKIP3 is likely to lead to the identification of a novel regulatory complex that modulates Shal channel inactivation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Canales de Potasio Shal/fisiología , Animales , Animales Modificados Genéticamente , Biofisica , Línea Celular , Células Cultivadas , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Estimulación Eléctrica/métodos , Embrión no Mamífero , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp/métodos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transfección/métodos
8.
Front Neural Circuits ; 14: 603397, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240047

RESUMEN

The diversity and dense interconnectivity of cells in the nervous system present a huge challenge to understanding how brains work. Recent progress toward such understanding, however, has been fuelled by the development of techniques for selectively monitoring and manipulating the function of distinct cell types-and even individual neurons-in the brains of living animals. These sophisticated techniques are fundamentally genetic and have found their greatest application in genetic model organisms, such as the fruit fly Drosophila melanogaster. Drosophila combines genetic tractability with a compact, but cell-type rich, nervous system and has been the incubator for a variety of methods of neuronal targeting. One such method, called Split Gal4, is playing an increasingly important role in mapping neural circuits in the fly. In conjunction with functional perturbations and behavioral screens, Split Gal4 has been used to characterize circuits governing such activities as grooming, aggression, and mating. It has also been leveraged to comprehensively map and functionally characterize cells composing important brain regions, such as the central complex, lateral horn, and the mushroom body-the latter being the insect seat of learning and memory. With connectomics data emerging for both the larval and adult brains of Drosophila, Split Gal4 is also poised to play an important role in characterizing neurons of interest based on their connectivity. We summarize the history and current state of the Split Gal4 method and indicate promising areas for further development or future application.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Proteínas de Drosophila/genética , Vías Nerviosas/fisiología , Neuronas/fisiología , Factores de Transcripción/genética , Animales , Conectoma , Drosophila , Drosophila melanogaster , Cuerpos Pedunculados
9.
iScience ; 23(5): 101108, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32408174

RESUMEN

Eclosion hormone (EH) was originally identified as a brain-derived hormone capable of inducing the behavioral sequences required for molting across insect species. However, its role in this process (called ecdysis) has since been confounded by discrepancies in the effects of genetic and cellular manipulations of EH function in Drosophila. Although knock-out of the Eh gene results in severe ecdysis-associated deficits accompanied by nearly complete larval lethality, ablation of the only neurons known to express EH (i.e. Vm neurons) is only partially lethal and surviving adults emerge, albeit abnormally. Using new tools for sensitively detecting Eh gene expression, we show that EH is more widely expressed than previously thought, both within the nervous system and in somatic tissues, including trachea. Ablating all Eh-expressing cells has effects that closely match those of Eh gene knock-out; developmentally suppressing them severely disrupts eclosion. Our results thus clarify and extend the scope of EH action.

10.
J Neurosci ; 28(53): 14379-91, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19118171

RESUMEN

Hormones are often responsible for synchronizing somatic physiological changes with changes in behavior. Ecdysis (i.e., the shedding of the exoskeleton) in insects has served as a useful model for elucidating the molecular and cellular mechanisms of this synchronization, and has provided numerous insights into the hormonal coordination of body and behavior. An example in which the mechanisms have remained enigmatic is the neurohormone bursicon, which, after the final molt, coordinates the plasticization and tanning of the initially folded wings with behaviors that drive wing expansion. The somatic effects of the hormone are governed by bursicon that is released into the blood from neurons in the abdominal ganglion (the B(AG)), which die after wing expansion. How bursicon induces the behavioral programs required for wing expansion, however, has remained unknown. Here we show by targeted suppression of excitability that a pair of bursicon-immunoreactive neurons distinct from the B(AG) and located within the subesophageal ganglion in Drosophila (the B(SEG)) is involved in controlling wing expansion behaviors. Unlike the B(AG), the B(SEG) arborize widely in the nervous system, including within the abdominal neuromeres, suggesting that, in addition to governing behavior, they also may modulate the B(AG.) Indeed, we show that animals lacking bursicon receptor function have deficits both in the humoral release of bursicon and in posteclosion apoptosis of the B(AG). Our results reveal novel neuromodulatory functions for bursicon and support the hypothesis that the B(SEG) are essential for orchestrating both the behavioral and somatic processes underlying wing expansion.


Asunto(s)
Sistema Nervioso Central/metabolismo , Hormonas de Insectos/metabolismo , Hormonas de Invertebrados/fisiología , Metamorfosis Biológica/fisiología , Alas de Animales/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Antígenos CD8/metabolismo , Calcitonina/metabolismo , Muerte Celular/genética , Muerte Celular/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ganglios de Invertebrados/crecimiento & desarrollo , Ganglios de Invertebrados/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Etiquetado Corte-Fin in Situ/métodos , Hormonas de Insectos/genética , Hormonas de Invertebrados/genética , Larva , Metamorfosis Biológica/genética , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo
11.
Nat Commun ; 10(1): 4093, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31501438

RESUMEN

ON and OFF selectivity in visual processing is encoded by parallel pathways that respond to either light increments or decrements. Despite lacking the anatomical features to support split channels, Drosophila larvae effectively perform visually-guided behaviors. To understand principles guiding visual computation in this simple circuit, we focus on investigating the physiological properties and behavioral relevance of larval visual interneurons. We find that the ON vs. OFF discrimination in the larval visual circuit emerges through light-elicited cholinergic signaling that depolarizes a cholinergic interneuron (cha-lOLP) and hyperpolarizes a glutamatergic interneuron (glu-lOLP). Genetic studies further indicate that muscarinic acetylcholine receptor (mAchR)/Gαo signaling produces the sign-inversion required for OFF detection in glu-lOLP, the disruption of which strongly impacts both physiological responses of downstream projection neurons and dark-induced pausing behavior. Together, our studies identify the molecular and circuit mechanisms underlying ON vs. OFF discrimination in the Drosophila larval visual system.


Asunto(s)
Drosophila melanogaster/fisiología , Receptores Muscarínicos/metabolismo , Transducción de Señal , Vías Visuales/metabolismo , Animales , Conducta Animal/efectos de la radiación , Calcio/metabolismo , Drosophila melanogaster/efectos de la radiación , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Interneuronas/efectos de la radiación , Larva/efectos de la radiación , Luz , Neurópilo/metabolismo , Neurópilo/efectos de la radiación , Terminales Presinápticos/metabolismo , Terminales Presinápticos/efectos de la radiación
12.
Elife ; 72018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29473541

RESUMEN

In Drosophila, long-term memory (LTM) requires the cAMP-dependent transcription factor CREBB, expressed in the mushroom bodies (MB) and phosphorylated by PKA. To identify other kinases required for memory formation, we integrated Trojan exons encoding T2A-GAL4 into genes encoding putative kinases and selected for genes expressed in MB. These lines were screened for learning/memory deficits using UAS-RNAi knockdown based on an olfactory aversive conditioning assay. We identified a novel, conserved kinase, Meng-Po (MP, CG11221, SBK1 in human), the loss of which severely affects 3 hr memory and 24 hr LTM, but not learning. Remarkably, memory is lost upon removal of the MP protein in adult MB but restored upon its reintroduction. Overexpression of MP in MB significantly increases LTM in wild-type flies showing that MP is a limiting factor for LTM. We show that PKA phosphorylates MP and that both proteins synergize in a feedforward loop to control CREBB levels and LTM. key words: Drosophila, Mushroom bodies, SBK1, deGradFP, T2A-GAL4, MiMIC.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Memoria a Largo Plazo , Proteínas Quinasas/metabolismo , Transactivadores/metabolismo , Animales , Condicionamiento Clásico , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Percepción Olfatoria
13.
Elife ; 62017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29165248

RESUMEN

Neural networks are typically defined by their synaptic connectivity, yet synaptic wiring diagrams often provide limited insight into network function. This is due partly to the importance of non-synaptic communication by neuromodulators, which can dynamically reconfigure circuit activity to alter its output. Here, we systematically map the patterns of neuromodulatory connectivity in a network that governs a developmentally critical behavioral sequence in Drosophila. This sequence, which mediates pupal ecdysis, is governed by the serial release of several key factors, which act both somatically as hormones and within the brain as neuromodulators. By identifying and characterizing the functions of the neuronal targets of these factors, we find that they define hierarchically organized layers of the network controlling the pupal ecdysis sequence: a modular input layer, an intermediate central pattern generating layer, and a motor output layer. Mapping neuromodulatory connections in this system thus defines the functional architecture of the network.


Asunto(s)
Drosophila/crecimiento & desarrollo , Muda , Red Nerviosa/fisiología , Animales , Encéfalo/fisiología , Pupa/crecimiento & desarrollo
14.
Genetics ; 202(1): 175-89, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26534952

RESUMEN

To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone's neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced "Trojan exon" technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks.


Asunto(s)
Drosophila melanogaster/embriología , Muda/fisiología , Isoformas de Proteínas , Receptores de Péptidos/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Hormonas de Insectos/fisiología , Masculino , Neuronas/fisiología , Isoformas de Proteínas/fisiología , Pupa/fisiología , Receptores de Péptidos/genética
15.
Elife ; 52016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27855059

RESUMEN

Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes - motor neurons, interneurons and mechanosensory neurons - controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior.


Asunto(s)
Copulación , Drosophila/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas , Células Receptoras Sensoriales/fisiología , Animales , Masculino , Redes Neurales de la Computación
16.
Cell Rep ; 10(8): 1410-21, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25732830

RESUMEN

Genetically encoded effectors are important tools for probing cellular function in living animals, but improved methods for directing their expression to specific cell types are required. Here, we introduce a simple, versatile method for achieving cell-type-specific expression of transgenes that leverages the untapped potential of "coding introns" (i.e., introns between coding exons). Our method couples the expression of a transgene to that of a native gene expressed in the cells of interest using intronically inserted "plug-and-play" cassettes (called "Trojan exons") that carry a splice acceptor site followed by the coding sequences of T2A peptide and an effector transgene. We demonstrate the efficacy of this approach in Drosophila using lines containing suitable MiMIC (Minos-mediated integration cassette) transposons and a palette of Trojan exons capable of expressing a range of commonly used transcription factors. We also introduce an exchangeable, MiMIC-like Trojan exon construct that can be targeted to coding introns using the Crispr/Cas system.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/metabolismo , Regiones no Traducidas 5' , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Drosophila/genética , Proteínas de Drosophila/metabolismo , Exones , Intrones , Sitios de Empalme de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes/genética , Transgenes/fisiología
17.
Curr Biol ; 24(11): 1199-211, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24814146

RESUMEN

BACKGROUND: Enteroendocrine cells populate gastrointestinal tissues and are known to translate local cues into systemic responses through the release of hormones into the bloodstream. RESULTS: Here we report a novel function of enteroendocrine cells acting as local regulators of intestinal stem cell (ISC) proliferation through modulation of the mesenchymal stem cell niche in the Drosophila midgut. This paracrine signaling acts to constrain ISC proliferation within the epithelial compartment. Mechanistically, midgut enteroendocrine cells secrete the neuroendocrine hormone Bursicon, which acts-beyond its known roles in development-as a paracrine factor on the visceral muscle (VM). Bursicon binding to its receptor, DLGR2, the ortholog of mammalian leucine-rich repeat-containing G protein-coupled receptors (LGR4-6), represses the production of the VM-derived EGF-like growth factor Vein through activation of cAMP. CONCLUSIONS: We therefore identify a novel paradigm in the regulation of ISC quiescence involving the conserved ligand/receptor Bursicon/DLGR2 and a previously unrecognized tissue-intrinsic role of enteroendocrine cells.


Asunto(s)
Drosophila melanogaster/fisiología , Células Enteroendocrinas/fisiología , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina , Animales , Diferenciación Celular , Proliferación Celular , AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Regulación de la Expresión Génica , Homeostasis , Intestinos/citología , Intestinos/fisiología , Hormonas de Invertebrados/genética , Hormonas de Invertebrados/metabolismo , Músculos/metabolismo , Neurregulinas/genética , Neurregulinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
18.
Neuron ; 81(3): 603-615, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24507194

RESUMEN

Many visual animals have innate preferences for particular wavelengths of light, which can be modified by learning. Drosophila's preference for UV over visible light requires UV-sensing R7 photoreceptors and specific wide-field amacrine neurons called Dm8. Here we identify three types of medulla projection neurons downstream of R7 and Dm8 and show that selectively inactivating one of them (Tm5c) abolishes UV preference. Using a modified GRASP method to probe synaptic connections at the single-cell level, we reveal that each Dm8 neuron forms multiple synaptic contacts with Tm5c in the center of Dm8's dendritic field but sparse connections in the periphery. By single-cell transcript profiling and RNAi-mediated knockdown, we determine that Tm5c uses the kainate receptor Clumsy to receive excitatory glutamate input from Dm8. We conclude that R7s→Dm8→Tm5c form a hard-wired glutamatergic circuit that mediates UV preference by pooling ∼16 R7 signals for transfer to the lobula, a higher visual center.


Asunto(s)
Visión de Colores/fisiología , Fototransducción/fisiología , Red Nerviosa/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Receptores de Glutamato/metabolismo , Vías Visuales/citología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Mapeo Encefálico , Visión de Colores/efectos de la radiación , Drosophila , Proteínas de Drosophila/genética , Regulación de la Expresión Génica/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Proteínas Fluorescentes Verdes/genética , Fototransducción/efectos de la radiación , Red Nerviosa/efectos de la radiación , Optometría , Células Fotorreceptoras de Invertebrados/clasificación , Interferencia de ARN/fisiología , Receptores de Glutamato/genética , Rayos Ultravioleta , Vías Visuales/fisiología , Vías Visuales/efectos de la radiación
19.
Genetics ; 190(3): 1139-44, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22209908

RESUMEN

In Drosophila, the Gal4-UAS system permits a transgene to be expressed in the same pattern as a gene of interest by placing the Gal4 transcription factor under control of the gene's DNA regulatory elements. If these regulatory elements are not known, however, expression of Gal4 in the desired pattern may be difficult or impossible. To solve this problem, we have developed a method for co-expressing Gal4 with the endogenous gene by exploiting the "ribosomal skipping" mechanism of the viral T2A peptide. This method requires explicit knowledge only of the endogenous gene's open reading frame and not its regulatory elements.


Asunto(s)
Fusión Artificial Génica/métodos , Drosophila/genética , Regulación de la Expresión Génica , Transgenes , Animales , Línea Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Orden Génico , Sistemas de Lectura Abierta , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
J Cell Sci ; 117(Pt 20): 4797-806, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15340015

RESUMEN

We examine the light-dependent subcellular translocation of the visual G(q)alpha protein between the signaling compartment, the rhabdomere and the cell body in Drosophila photoreceptors. We characterize the translocation of G(q)alpha and provide the first evidence implicating the involvement of the photoreceptor-specific myosin III NINAC in G(q)alpha transport. Translocation of G(q)alpha from the rhabdomere to the cell body is rapid, taking less than 5 minutes. Higher light intensities increased the quantity of G(q)alpha translocated out of the rhabdomeres from 20% to 75%, consistent with a mechanism for light adaptation. We demonstrate that translocation of G(q)alpha requires rhodopsin, but none of the known downstream phototransduction components, suggesting that the signaling pathway triggering translocation occurs upstream of G(q)alpha. Finally, we show that ninaC mutants display a significantly reduced rate of G(q)alpha transport from the cell body to the rhabdomere, suggesting that NINAC might function as a light-dependent plus-end motor involved in the transport of G(q)alpha.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas del Ojo/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Luz , Cadenas Pesadas de Miosina/metabolismo , Animales , Transporte Biológico/fisiología , Canales de Calcio/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Endocitosis , Proteínas del Ojo/genética , Proteínas de la Membrana/metabolismo , Cadenas Pesadas de Miosina/genética , Células Fotorreceptoras de Invertebrados/citología , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/metabolismo , Canales de Potencial de Receptor Transitorio , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA