Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Neurosci ; 42(41): 7833-7847, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36414013

RESUMEN

Autism is characterized by two key diagnostic criteria including social deficits and repetitive behaviors. Although recent studies implicated ventral striatum in social deficits and dorsal striatum in repetitive behaviors, here we revealed coexisting and opposite morphologic and functional alterations in the dorsostriatal direct and indirect pathways, and such alterations in these two pathways were found to be responsible, respectively, for the two abovementioned different autism-like behaviors exhibited by male mice prenatally exposed to valproate. The alteration in direct pathway was characterized by a potentiated state of basal activity, with impairment in transient responsiveness of D1-MSNs during social exploration. Concurrent alteration in indirect pathway was a depressed state of basal activity, with enhancement in transient responsiveness of D2-MSNs during repetitive behaviors. A causal relationship linking such differential alterations in these two pathways to the coexistence of these two autism-like behaviors was demonstrated by the cell type-specific correction of abnormal basal activity in the D1-MSNs and D2-MSNs of valproate-exposed mice. The findings support those differential alterations in two striatal pathways mediate the two coexisting autism-like behavioral abnormalities, respectively. This result will help in developing therapeutic options targeting these circuit alterations.SIGNIFICANCE STATEMENT Autism is characterized by two key diagnostic criteria including social deficits and repetitive behaviors. Although a number of recent studies have implicated ventral striatum in social deficits and dorsal striatum in repetitive behaviors, but social behaviors need to be processed by a series of actions, and repetitive behaviors, especially the high-order repetitive behaviors such as restrictive interests, have its scope to cognitive and emotional domains. The current study, for the first time, revealed that prenatal valproate exposure induced coexisting and differential alterations in the dorsomedial striatal direct and indirect pathways, and that these alterations mediate the two coexisting autism-like behavioral abnormalities, respectively. This result will help in developing therapeutic options targeting these circuit alterations to address the behavioral abnormalities.


Asunto(s)
Trastorno Autístico , Estriado Ventral , Ratones , Animales , Masculino , Trastorno Autístico/metabolismo , Ácido Valproico , Conducta Social , Estriado Ventral/metabolismo
2.
BMC Biol ; 20(1): 108, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35550070

RESUMEN

BACKGROUND: Cannabinoids and their derivatives attract strong interest due to the tremendous potential of their psychoactive effects for treating psychiatric disorders and symptoms. However, their clinical application is restricted by various side-effects such as impaired coordination, anxiety, and learning and memory disability. Adverse impact on dorsal striatum-dependent learning is an important side-effect of cannabinoids. As one of the most important forms of learning mediated by the dorsal striatum, reinforcement learning is characterized by an initial association learning phase, followed by habit learning. While the effects of cannabinoids on habit learning have been well-studied, little is known about how cannabinoids influence the initial phase of reinforcement learning. RESULTS: We found that acute activation of cannabinoid receptor type 1 (CB1R) by the synthetic cannabinoid HU210 induced dose-dependent impairment of association learning, which could be alleviated by intra-dorsomedial striatum (DMS) injection of CB1R antagonist. Moreover, acute exposure to HU210 elicited enhanced synaptic transmission in striatonigral "direct" pathway medium spiny neurons (MSNs) but not indirect pathway neurons in DMS. Intriguingly, enhancement of synaptic transmission that is also observed after learning was abolished by HU210, indicating cannabinoid system might disrupt reinforcement learning by confounding synaptic plasticity normally required for learning. Remarkably, the impaired response-reinforcer learning was also induced by selectively enhancing the D1-MSN (MSN that selectively expresses the dopamine receptor type 1) activity by virally expressing excitatory hM3Dq DREADD (designer receptor exclusively activated by a designer drug), which could be rescued by specifically silencing the D1-MSN activity via hM4Di DREADD. CONCLUSION: Our findings demonstrate dose-dependent deleterious effects of cannabinoids on association learning by disrupting plasticity change required for learning associated with the striatal direct pathway, which furthers our understanding of the side-effects of cannabinoids and the underlying mechanisms.


Asunto(s)
Cannabinoides , Aprendizaje por Asociación , Cannabinoides/metabolismo , Cannabinoides/farmacología , Cuerpo Estriado/metabolismo , Humanos , Neuronas/fisiología , Transmisión Sináptica
3.
Zhen Ci Yan Jiu ; 48(3): 217-25, 2023 Mar 25.
Artículo en Zh | MEDLINE | ID: mdl-36951072

RESUMEN

OBJECTIVE: To investigate the relationship between acupoint sensitization on the body surface and neuronal intrinsic excitability of the medium- and small-size dorsal root ganglion (DRG) neurons from the perspective of ion channel kinetics in mice with gastric ulcer. METHODS: Male C57BL/6J mice were randomly divided into control (n=32) and model groups (n=34). The gastric ulcer model was established by injection of 60% glacial acetic acid (0.2 mL/100 g) into the gastric wall muscle layer and submucosa near the pylorus in the minor curvature of the stomach. In contrast, the same dose of normal saline was injected in the same way in the control group. Six days after modeling, Evans blue (EB) solution was injected into the mouse's tail vein for observing the number and distribution of the exudation blue spots on the body surface. Histopathological changes of the gastric tissue were observed by H.E. staining. Then, whole-cell membrane currents and intrinsic excitability of medium- and small-size neurons in the spinal T9-T11 DRGs were measured by in vitro electrophysiology combining with biocytin-ABC method. RESULTS: In the control group, EB exudation blue spots were not obvious, while in the model group, the blue spots on the body surface were densely distributed in the area of spinal T9-T11 segments, the epigastric region, and the skin around "Zhongwan" (CV12) and "Huaroumen" (ST24) regions, and near the surgical incision region. Compared with the control group, the model group had a high level of eosinophilic infiltrates in the submucosa of gastric tissues, severe gastric fossa structure damage, gastric fundus gland dilation and other pathological manifestations. The number of exudation blue spots was proportional to the degree of inflammatory reaction in the stomach. In comparison with the control group, the spike discharges of type II of medium-size DRG neurons in T9-T11 segments were decreased, and the current of whole-cell membrane was increased, basic intensity was decreased (P<0.05), discharge frequency and discharge number were increased (P<0.01,P<0.000 1); while the discharges of type I small-size DRG neurons were decreased, those of type II neurons increased, the whole-cell membrane current was decreased, and discharge frequency and discharge number were decreased (P<0.01, P<0.000 1). CONCLUSION: Both the medium- and small-size DRG neurons from the spinal T9-T11 segments involve in gastric ulcer-induced acupoint sensitization via their different spike discharge activities. And intrinsic excitability of these DRG neurons can not only dynamically encode the plasticity of acupoint sensitization, but also can help us understand the neural mechanism of acupoint sensitization induced by visceral injury.


Asunto(s)
Ganglios Espinales , Úlcera Gástrica , Ratas , Ratones , Masculino , Animales , Ganglios Espinales/fisiología , Úlcera Gástrica/genética , Úlcera Gástrica/terapia , Ratas Sprague-Dawley , Puntos de Acupuntura , Ratones Endogámicos C57BL , Neuronas
4.
Zhen Ci Yan Jiu ; 48(9): 833-42, 2023 Sep 25.
Artículo en Zh | MEDLINE | ID: mdl-37730253

RESUMEN

OBJECTIVE: To investigate the relationship between the sensitization state of acupoints on the surface of the myocardial ischemia (MI) model mice and the changes in the electrophysiological properties of the dorsal root ganglion (DRG) neurons in the corresponding spinal cord segment, and its underlying mechanism. METHODS: Sixty-eight male C57BL/6J mice were randomly divided into control and model groups (34 mice in each group). The model group received an intraperitoneal injection of 160 mg/kg isoproterenol (ISO) to establish the MI model, and the control group received an injection of the same dose of normal saline as the model group. After modeling for about 6 days, MI proportion was measured by HE staining to verify the pathological changes in the heart tissue. Evans blue (EB) dye was injected into the tail vein of mice to reflect the size, location, distribution, and number of exudates on the body surface. Then, whole-cell membrane currents, intrinsic excitability and membrane properties of different types of DRG neurons were evaluated by electrophysiological experiment in vitro. RESULTS: Compared with the control group, the heart size was larger, with pathological outcomes showing enlarged myocardial hypertrophy, destroyed structure of cardiomyocytes, with mononuclear cell infiltration among the cardiomyocytes in the model group. Compared with the control group, the number of EB exudation points was significantly increased (P<0.01), which were mainly concentrated in the epidermis near the T1-T5 segment of the spinal cord, "Feishu" (BL13), "Jueyinshu" (BL14) and "Xinshu" (BL15) in the model group. Compared with the control group, the rheobase and action potential amplitude (APA) of DRG medium-sized neurons were obviously decreased (P<0.01, P<0.05), while the whole-cell membrane currents, the spike numbers, the average instantaneous frequency, and the average discharge frequency were markedly increased (P<0.01). There were no significant alterations in the membrane properties and intrinsic excitability induced by depolarized currents of small-sized neurons between groups. Compared with the control group, the whole-cell membrane currents, spike numbers, and the average instantaneous frequency were significantly increased in the model group(P<0.05, P<0.01) while rheobase was significantly decreased (P<0.05) in DRG medium-sized neurons labeled with biotin and CGRP. CONCLUSION: After the mice were modeled by ISO, the DRG medium-size neurons in the T1-T5 segment of the spinal cord may mediate the sensitization of acupoints on the body surface through their different neuronal membrane properties and intrinsic excitabilities.


Asunto(s)
Puntos de Acupuntura , Isquemia Miocárdica , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Ganglios Espinales , Isquemia Miocárdica/terapia , Azul de Evans
5.
Mol Neurobiol ; 58(11): 5667-5681, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34387814

RESUMEN

The activity of the midbrain dopamine system reflects the valence of environmental events and modulates various brain structures to modify an organism's behavior. A series of recent studies reported that the direct and indirect pathways in the striatum are critical for instrumental learning, but the dynamic changes in dopamine neuron activity that occur during negative reinforcement learning are still largely unclear. In the present study, by using a negative reinforcement learning paradigm employing foot shocks as aversive stimuli, bidirectional changes in substantia nigra pars compacta (SNc) dopamine neuron activity in the learning and habituation phases were observed. The results showed that in the learning phase, before mice had mastered the skill of escaping foot shocks, the presence of foot shocks induced a transient reduction in the activity of SNc dopamine neurons; however, in the habituation phase, in which the learned skill was automated, it induced a transient increase. Microinjection of a dopamine D1 receptor (D1R) or D2 receptor (D2R) antagonist into the dorsomedial striatum (DMS) significantly impaired learning behavior, suggesting that the modulatory effects of dopamine on both the direct and indirect pathways are required. Moreover, during the learning phase, excitatory synaptic transmission to DMS D2R-expressing medium spiny neurons (D2-MSNs) was potentiated. However, upon completion of the learning and habituation phases, the synapses onto D1R-expressing medium spiny neurons (D1-MSNs) were potentiated, and those onto D2-MSNs were restored to normal levels. The bidirectional changes in both SNc dopamine neuron activity and DMS synaptic plasticity might be the critical neural correlates for negative reinforcement learning.


Asunto(s)
Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Mesencéfalo/fisiología , Refuerzo en Psicología , Animales , Benzazepinas/farmacología , Cuerpo Estriado/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Conducta de Ingestión de Líquido/efectos de los fármacos , Electrochoque , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Ácido Glutámico/metabolismo , Habituación Psicofisiológica/efectos de los fármacos , Habituación Psicofisiológica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual , Sacarosa , Transmisión Sináptica
6.
eNeuro ; 8(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34035070

RESUMEN

Prolonged stress induces neural maladaptations in the mesolimbic dopamine (DA) system and produces emotional and behavioral disorders. However, the effects of stress on activity of DA neurons are diverse and complex that hinge on the type, duration, intensity, and controllability of stressors. Here, controlling the duration, intensity, and type of the stressors to be identical, we observed the effects of stressor controllability on the activity of substantia nigra pars compacta (SNc) DA neurons in mice. We found that both lack and loss of control (LOC) over shock enhance the basal activity and intrinsic excitability of SNc DA neurons via modulation of Ih current, but not via corticosterone serum level. Moreover, LOC over shock produces more significant enhancement in the basal activity of SNc DA neurons than that produced by shock per se, and therefore attenuates the response to natural reward. This attenuation can be reversed by control over shock. These results indicate that although chronic stress per se tends to enhance the basal activity of SNc DA neurons, LOC over the stressor is able to induce a larger enhancement in the basal activity of SNc DA neurons and produce more severe behavioral deficits. However, control over stress ameliorates the deleterious effects of stress, highlighting the role of stress controllability.


Asunto(s)
Neuronas Dopaminérgicas , Porción Compacta de la Sustancia Negra , Animales , Dopamina , Ratones , Recompensa
7.
Neurosci Bull ; 37(8): 1119-1134, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33905097

RESUMEN

Plasticity in the glutamatergic synapses on striatal medium spiny neurons (MSNs) is not only essential for behavioral adaptation but also extremely vulnerable to drugs of abuse. Modulation on these synapses by even a single exposure to an addictive drug may interfere with the plasticity required by behavioral learning and thus produce impairment. In the present work, we found that the negative reinforcement learning, escaping mild foot-shocks by correct nose-poking, was impaired by a single in vivo exposure to 20 mg/kg cocaine 24 h before the learning in mice. Either a single exposure to cocaine or reinforcement learning potentiates the glutamatergic synapses on MSNs expressing the striatal dopamine 1 (D1) receptor (D1-MSNs). However, 24 h after the cocaine exposure, the potentiation required for reinforcement learning was disrupted. Specific manipulation of the activity of striatal D1-MSNs in D1-cre mice demonstrated that activation of these MSNs impaired reinforcement learning in normal D1-cre mice, but inhibition of these neurons reversed the reinforcement learning impairment induced by cocaine. The results suggest that cocaine potentiates the activity of direct pathway neurons in the dorsomedial striatum and this potentiation might disrupt the potentiation produced during and required for reinforcement learning.


Asunto(s)
Cocaína , Animales , Cocaína/farmacología , Cuerpo Estriado , Neuronas Dopaminérgicas , Ratones , Ratones Transgénicos , Refuerzo en Psicología
8.
Int J Clin Exp Pathol ; 13(7): 1578-1589, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782676

RESUMEN

Methyl-CpG-binding protein 2 (MeCP2) epigenetically modulates gene expression through genome-wide binding to methylated CpG dinucleotides. This study aimed to evaluate the effect of MeCP2 on the global gene expression profile of human gastric adenocarcinoma to determine the potential molecular mechanism of MeCP2. To identify the gene targets of MeCP2 in gastric cancer cells, we combined the expression microarray and chromatin immunoprecipitation approaches of MeCP2, followed by sequencing (ChIP-seq) to define the MeCP2-binding sites across the whole genome. The methylation levels of the promoters in BGC-823 cells were downloaded from the National Center for Biotechnology Information Gene Expression Omnibus database (GSM1093053). A total of 5,684 ChIP-enriched peaks were identified by comparing IP and Input, using a p-value threshold of 10-5 in ChIP-seq. The bioinformatics analysis presented a predictive model of the genome-wide MeCP2-binding pattern, in which the MeCP2 binding site is closely related to the transcription start site region in the genome. The results of motif detection showed that the MeCP2-binding regions contained not only the core CpG motif but also the extended poly (A/T) motifs. Finally, an integrative analysis of the sequence features and DNA methylation states revealed that MeCP2's function as a multifunctional transcriptional regulator may not be directly related to the methylation status of the binding site. The first MeCP2 ChIP-seq and gene expression microarray analysis in BGC-823 cells revealed that MeCP2 plays multiple roles in the regulation of gene expression depending on the microenvironment, such as sequence characteristics and the methylation levels of binding sites.

9.
Behav Brain Res ; 395: 112836, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32745663

RESUMEN

Individuals with autism spectrum disorder (ASD) display dysfunction in learning from environmental stimulus that have positive or negative emotional values, posing obstacles to their everyday life. Unfortunately, mechanisms of the dysfunction are still unclear. Although early intervention for ASD victims based on reinforcement learning are commonly used, the mechanisms and characteristics of the improvement are also unknown. By using a mice model of ASD produced by prenatal exposure to valproic acid (VPA), the present work discovered a delayed response-reinforcer forming, and an impaired habit forming in a negative reinforcement learning paradigm in VPA exposure male offspring. But the extinction of the learned skills was found to become faster than normal male animals. Since escape action of nosepoking and the motility remain unchanged in the VPA male offspring, the impaired learning and the accelerated extinction are caused by deficits in higher brain functions underlying association between the animals' behavioral responses and the outcomes of such responses. The results further suggest that the rodent ASD model produced by prenatal exposure to VPA reproduces the deficits in reasoning or building the contingency between one's own behaviors and the consequent outcomes of the behavior seen in ASD patients.


Asunto(s)
Trastorno del Espectro Autista/psicología , Condicionamiento Psicológico/fisiología , Aprendizaje/fisiología , Animales , Trastorno del Espectro Autista/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal , Refuerzo en Psicología , Conducta Social , Ácido Valproico/efectos adversos
10.
Neuroreport ; 31(12): 857-864, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32453025

RESUMEN

Chronic sleep loss caused lots of health problems, also including cognition impairment. Tea is one of the most popular drinks when people stay up late. Nevertheless, the effects of tea on sleep deprivation-induced cognition impairment are still unclear. In the present study, we found 24-h sleep deprivation (S-DEP) increased membrane α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor level through a tumor necrosis factor α (TNFα)-dependent pathway in hippocampi. Blocking elevated TNFα level can protect S-DEP mice from impaired learning ability according to behavioral test. Tea polyphenols, major active compounds in green tea, suppressed TNFα production through downregulating TNFα converting enzyme (TACE) level. Meanwhile, tea polyphenols treatment could ameliorate recognition impairment and anxiety-like behaviors in S-DEP mice. The aforementioned results demonstrate cognition protective effects of tea polyphenols in S-DEP mice model, which provide a theoretical basis for the treatments of S-DEP-induced cognition impairment by targeting the TACE/TNFα/AMPA pathway.


Asunto(s)
Memoria/efectos de los fármacos , Polifenoles/farmacología , Receptores AMPA/efectos de los fármacos , Privación de Sueño/tratamiento farmacológico , , Animales , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Sustancias Protectoras/farmacología , Receptores AMPA/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Privación de Sueño/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1081-1082: 8-14, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494984

RESUMEN

Chicoric acid (CA) is an active derivative of caffeic acid, which is naturally present in many medicinal plants and vegetables. In the present study, the metabolic profile of CA was determined in rat plasma, urine and feces and was subsequently used to propose the metabolic pathways of CA. CA (100 mg/kg) was orally administered to rats by gastric intubation. Then, the plasma, urine and feces samples were collected and treated with methanol and acetonitrile (1:1, V/V) to precipitate the proteins. The pretreated samples were separated by ultra performance liquid chromatography (UPLC) equipped with an HSS T3 column (2.1 mm × 100 mm I.D., 1.7 µm) and with quadrupole time-of-flight mass spectrometry (Q-TOF-MS) as the detection method. A total of nineteen metabolites were detected and identified based on the characteristics of their deprotonated ions in the plasma, urine and feces samples. The results revealed that the metabolism of CA followed a number of known in-vivo mammalian biotransformation pathways including hydrolysis, reduction, methylation, sulfation, glucuronidation, acetylation, isomerization and deoxygenation.


Asunto(s)
Ácidos Cafeicos/análisis , Ácidos Cafeicos/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Succinatos/análisis , Succinatos/metabolismo , Administración Oral , Animales , Ácidos Cafeicos/administración & dosificación , Heces/química , Límite de Detección , Modelos Lineales , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Succinatos/administración & dosificación
12.
Zhongguo Gu Shang ; 31(4): 386-390, 2018 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-29772868

RESUMEN

As a self-protective mechanism of cells, autophagy of cells can maintain cell stability by degrading self-aging substances, and it can be highly induced. The ability of autophagy to degraded cells will decrease with age. The resorption phenomenon after lumbar disc herniation is one of the effective mechanisms in conservative treatment of lumbar disc herniation. The degenerative lesion of intervertebral disc is one of the main reasons of lumbar disc herniation. Cell autophagy is extensive participation in the degeneration of lumbar intervertebral disc, delaying the occurrence of degenerative disease. Futhermore, cell autophagy can potentially induce the occurrence of reabsorption. The study of cell autophagy has great significance to the degenerative disease of intervertebral disk and the reabsorption of lumbar disc herniation. And it is also of great significance for the clinical treatment of patients with lumbar disc herniation. For this reason, we should pay more attention to the study of cell autophagy in resorption.


Asunto(s)
Autofagia , Desplazamiento del Disco Intervertebral/patología , Disco Intervertebral/citología , Disco Intervertebral/patología , Vértebras Lumbares/patología , Humanos
13.
Food Funct ; 9(11): 5912-5924, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30375618

RESUMEN

Oxidative stress is considered as a pivotal culprit in neurodegenerative diseases and brain aging. The aim of present study was to investigate antioxidative and neuroprotective effects of sesamol, a phenolic lignan from sesame oil, on oxidative stress induced neuron damage and memory impairments. C57BL/6J mice were treated by intraperitoneal injections of d-galactose for 8 weeks. Sesamol treatment (0.05% w/v, in drinking water) suppressed d-galactose-induced liver damages and improved HO-1 and NQO1 mRNA levels. Behavioral tests, including Y-maze test and water maze-test, revealed that sesamol significantly improved oxidative stress-induced cognitive impairments. Meanwhile, sesamol ameliorated neuronal damage and improved BDNF level in rat hippocampus. Sesamol elevated mRNA levels and protein expressions of antioxidant enzymes HO-1 and NQO1 as well as decreased inflammatory cytokines TNF-α and IL-1ß in d-galactose-treated mice serum. In addition, activity of CAT and GSH level were increased in sesamol-treated mice serum. Moreover, sesamol treatment also balanced cellular redox status, protected mitochondrial dysfunction and upregulated antioxidant enzymes by activating the Nrf2 transcriptional pathway and its nuclear translocation in H2O2-treated SH-SY5Y cells. In conclusion, these results revealed that sesamol could be a potential neuroprotective agent during aging process due to its beneficial effects on liver-brain axis.


Asunto(s)
Antioxidantes/farmacología , Benzodioxoles/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Transducción de Señal , Animales , Línea Celular Tumoral , Galactosa/sangre , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Interleucina-1beta/sangre , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/sangre
14.
Food Chem Toxicol ; 107(Pt A): 138-149, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28655651

RESUMEN

Cichoric acid (CA), extracted from edible plants and vegetables, is a potential natural nutraceutical, with antioxidant and hypoglycaemic biological functions. The objective of this study was to explore the potential underlying molecular mechanisms involved in normalizing diabetes-related changes in hyperglycaemia via pancreas apoptosis and muscle injury induced by multiple low-dose STZ (MLD-STZ) injection in response to dietary supplementation with CA. To induce the MLD-STZ diabetic mice, the C57BL/6J mice were intraperitoneally injected with STZ (50 mg/kg body weight) for consecutive five days. CA (60 mg/kg/d) was supplemented in drinking water for 4 weeks. Compared with control, CA inhibited pancreas apoptosis and adjusted islet function in diabetic mice, leading to an increase in insulin generation and secretion. Moreover, CA regulated mitochondrial biogenesis, glycogen synthesis, and inhibited inflammation via activating antioxidant responses, which contributes to the improvement in athletic ability and diabetic myopathy. In general, CA is a natural food-derived compound with the potential application for regulating glucose homeostasis and improving diabetes and its complications.


Asunto(s)
Ácidos Cafeicos/administración & dosificación , Diabetes Mellitus Experimental/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Succinatos/administración & dosificación , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Humanos , Hiperglucemia/metabolismo , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Músculos/efectos de los fármacos , Músculos/metabolismo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Estreptozocina/administración & dosificación , Estreptozocina/efectos adversos
15.
Sci Rep ; 7: 45728, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374807

RESUMEN

Sesamol, a nutritional phenolic antioxidant compound enriched in sesame seeds, has been shown to have potential anticancer activities. This study aims at characterizing the antitumor efficacy of sesamol and unveiling the importance of mitochondria in sesamol-induced effects using a human hepatocellular carcinoma cell line, HepG2 cells. Results of this study showed that sesamol treatment suppressed colony formation, elicited S phase arrest during cell cycle progression, and induced both intrinsic and extrinsic apoptotic pathway in vitro with a dose-dependent manner. Furthermore, sesamol treatment elicited mitochondrial dysfunction by inducing a loss of mitochondrial membrane potential. Impaired mitochondria and accumulated H2O2 production resulted in disturbance of redox-sensitive signaling including Akt and MAPKs pathways. Mitochondrial biogenesis was inhibited as suggested by the decline in expression of mitochondrial complex I subunit ND1, and the upstream AMPK/PGC1α signals. Importantly, sesamol inhibited mitophagy and autophagy through impeding the PI3K Class III/Belin-1 pathway. Autophagy stimulator rapamycin reversed sesamol-induced apoptosis and mitochondrial respiration disorders. Moreover, it was also shown that sesamol has potent anti-hepatoma activity in a xenograft nude mice model. These data suggest that mitochondria play an essential role in sesamol-induced HepG2 cells death, and further research targeting mitochondria will provide more chemotherapeutic opportunities.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Benzodioxoles/farmacología , Fenoles/farmacología , Animales , Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sirolimus/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Food Funct ; 7(9): 3902-9, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27526679

RESUMEN

Carrot pomace is an abundant, but underutilized, byproduct from the juice industry. In this study, the insoluble dietary fiber from carrot pomace was treated using an ultra-microgrinding process, and the resulting changes in its physicochemical properties and intestinal protective effect against heavy metal damage were examined. The SEM and fluorescence microscopy results showed that the grinding process could significantly decrease the particle size of carrot insoluble dietary fibre and increase its Brunauer-Emmett-Teller surface area from 0.374 to 1.835 m(2) g(-1). Correspondingly, the water-holding capacity, swelling capacity, and oil-holding capacity increased by 62.09%, 49.25% and 45.45%, respectively. The glucose-, nitrite-, and lead ion-adsorbing abilities also improved significantly compared with the raw samples. In addition, apoptosis assessment by AO/EB revealed that the ground fibre could effectively protect Caco-2 cells from lead ion damage. The MTT assay showed that carrot insoluble dietary fibre has no toxicity for Caco-2 cells at a concentration of 10.0 mg L(-1). The findings of this study highlighted the potential of the ultra-microgrinding process to produce a high added-value fibre ingredient from carrot residues.


Asunto(s)
Daucus carota/química , Enterocitos/metabolismo , Raíces de Plantas/química , Prebióticos , Sustancias Protectoras/metabolismo , Apoptosis/efectos de los fármacos , Células CACO-2 , Quelantes/efectos adversos , Quelantes/química , Quelantes/metabolismo , Fenómenos Químicos , China , Daucus carota/economía , Enterocitos/citología , Enterocitos/efectos de los fármacos , Manipulación de Alimentos , Industria de Procesamiento de Alimentos/economía , Humanos , Residuos Industriales/análisis , Residuos Industriales/economía , Plomo/química , Plomo/metabolismo , Plomo/toxicidad , Intoxicación por Plomo/prevención & control , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Prebióticos/efectos adversos , Prebióticos/análisis , Prebióticos/economía , Sustancias Protectoras/efectos adversos , Sustancias Protectoras/química , Sustancias Protectoras/economía , Solubilidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA