Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Fish Biol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721880

RESUMEN

Marine predators are vital to the healthy functioning of coastal ecosystems, but to understand their roles, it is necessary to elucidate their movement ecology, particularly in relation to one another. A decade's worth of acoustic telemetry data (2011-2020) from Algoa Bay, South Africa, was investigated to determine how two mesopredatory species (teleosts: dusky kob Argyrosomus japonicus, n = 11, and leervis Lichia amia, n = 16) and two top predatory species (sharks: ragged-tooth sharks Carcharias taurus, n = 45, and white sharks Carcharodon carcharias, n = 31) used and shared this bay ecosystem. Multi-annual seasonal fidelity to the bay was exhibited by all species, but differences in residency were observed among species. Similarly, species used space in the bay differently-the teleosts moved less and had movements restricted to the central and western inshore regions of the bay. Conversely, the sharks roamed more, but detections were concentrated in the western part of the bay for C. taurus and in the eastern part of the bay for C. carcharias. Social network analysis showed that species segregated in space and time on a fine scale. However, there was some interaction observed between C. taurus, L. amia, and A. japonicus, but to varying degrees. This is likely because of strong habitat preferences exhibited by each species and predator-prey relationships between these predatory guilds. Results highlight that the sheltered marine Algoa Bay is a resource-rich environment, supporting multiple predators with different hunting strategies albeit similar prey preferences. Finally, these species are likely afforded some protection by the current Greater Addo Elephant National Park Marine Protected Area in the bay but are vulnerable to fishing pressure when they leave this ecosystem.

2.
J Fish Biol ; 100(1): 134-149, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34658037

RESUMEN

The common smooth-hound shark, Mustelus mustelus, is a widely distributed demersal shark under heavy exploitation from various fisheries throughout its distribution range. To assist in the development of appropriate management strategies, the authors evaluate stock structure, site fidelity and movement patterns along the species' distribution in southern Africa based on a combination of molecular and long-term tag-recapture data. Eight species-specific microsatellite markers (N = 73) and two mitochondrial genes, nicotinamide adenine dehydrogenase subunit 4 and control region (N = 45), did not reveal any significant genetic structure among neighbouring sites. Nonetheless, tagging data demonstrate a remarkable degree of site fidelity with 76% of sharks recaptured within 50 km of the original tagging location. On a larger geographic scale, dispersal is governed by oceanographic features as demonstrated by the lack of movements across the Benguela-Agulhas transition zone separating the South-East Atlantic Ocean (SEAO) and South-West Indian Ocean (SWIO) populations. Microsatellite data supported very shallow ocean-based structure (SEAO and SWIO) and historical southward gene flow following the Agulhas Current, corroborating the influence of this dynamic oceanographic system on gene flow. Moreover, no movements between Namibia and South Africa were observed, indicating that the Lüderitz upwelling formation off the Namibian coast acts as another barrier to dispersal and gene flow. Overall, these results show that dispersal and stock structure of M. mustelus are governed by a combination of behavioural traits and oceanographic features such as steep temperature gradients, currents and upwelling systems.


Asunto(s)
Tiburones , Animales , Océano Atlántico , Explotaciones Pesqueras , Flujo Génico , Repeticiones de Microsatélite , Tiburones/genética
3.
J Fish Biol ; 98(3): 829-841, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33251592

RESUMEN

Stable-isotope analysis (SIA) provides a valuable tool to address complex questions pertaining to elasmobranch ecology. Liver, a metabolically active, high turnover tissue (~166 days for 95% turnover), has the potential to reveal novel insights into recent feeding/movement behaviours of this diverse group. To date, limited work has used this tissue, but ecological application of SIA in liver requires consideration of tissue preparation techniques given the potential for high concentrations of urea and lipid that could bias δ13 C and δ15 N values (i.e., result in artificially lower δ13 C and δ15 N values). Here we investigated the effectiveness of (a) deionized water washing (WW) for urea removal from liver tissue and (b) chloroform-methanol for extraction of lipids from this lipid rich tissue. We then (a) established C:N thresholds for deriving ecologically relevant liver isotopic values given complications of removing all lipid and (b) undertook a preliminary comparison of δ13 C values between tissue pairs (muscle and liver) to test if observed isotopic differences correlated with known movement behaviour. Tests were conducted on four large shark species: the dusky (DUS, Carcharhinus obscurus), sand tiger (RAG, Carcharias taurus), scalloped hammerhead (SCA, Sphyrna lewini) and white shark (GRE, Carcharodon carcharias). There was no significant difference in δ15 N values between lipid-extracted (LE) liver and lipid-extracted/water washed (WW) treatments, however, WW resulted in significant increases in %N, δ13 C and %C. Following lipid extraction (repeated three times), some samples were still biased by lipids. Our species-specific "C:N thresholds" provide a method to derive ecologically viable isotope data given the complexities of this lipid rich tissue (C:N thresholds of 4.0, 3.6, 4.7 and 3.9 for DUS, RAG, SCA and GRE liverLEWW tissue, respectively). The preliminary comparison of C:N threshold corrected liver and muscle δ13 C values corresponded with movement/habitat behaviours for each shark; minor differences in δ13 C values were observed for known regional movements of DUS and RAG (δ13 CDiffs = 0.24 ± 0.99‰ and 0.57 ± 0.38‰, respectively), while SCA and GRE showed greater differences (1.24 ± 0.63‰ and 1.08 ± 0.71‰, respectively) correlated to large-scale movements between temperate/tropical and pelagic/coastal environments. These data provide an approach for the successful application of liver δ13 C and δ15 N values to examine elasmobranch ecology.


Asunto(s)
Isótopos de Carbono/análisis , Técnicas de Química Analítica/veterinaria , Conducta Alimentaria/fisiología , Hígado/química , Isótopos de Nitrógeno/análisis , Animales , Ecosistema , Lípidos/química , Músculos/química , Tiburones/metabolismo , Especificidad de la Especie
4.
Evol Appl ; 17(1): e13628, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38283610

RESUMEN

Adaptive divergence in response to environmental clines are expected to be common in species occupying heterogeneous environments. Despite numerous advances in techniques appropriate for non-model species, gene-environment association studies in elasmobranchs are still scarce. The bronze whaler or copper shark (Carcharhinus brachyurus) is a large coastal shark with a wide distribution and one of the most exploited elasmobranchs in southern Africa. Here, we assessed the distribution of neutral and adaptive genomic diversity in C. brachyurus across a highly heterogeneous environment in southern Africa based on genome-wide SNPs obtained through a restriction site-associated DNA method (3RAD). A combination of differentiation-based genome-scan (outflank) and genotype-environment analyses (redundancy analysis, latent factor mixed models) identified a total of 234 differentiation-based outlier and candidate SNPs associated with bioclimatic variables. Analysis of 26,299 putatively neutral SNPs revealed moderate and evenly distributed levels of genomic diversity across sites from the east coast of South Africa to Angola. Multivariate and clustering analyses demonstrated a high degree of gene flow with no significant population structuring among or within ocean basins. In contrast, the putatively adaptive SNPs demonstrated the presence of two clusters and deep divergence between Angola and all other individuals from Namibia and South Africa. These results provide evidence for adaptive divergence in response to a heterogeneous seascape in a large, mobile shark despite high levels of gene flow. These results are expected to inform management strategies and policy at the national and regional level for conservation of C. brachyurus populations.

5.
Sci Rep ; 10(1): 17959, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087802

RESUMEN

Knowledge about the demographic histories of natural populations helps to evaluate their conservation status, and potential impacts of natural and anthropogenic pressures. In particular, estimates of effective population size obtained through molecular data can provide useful information to guide management decisions for vulnerable populations. The spotted ragged-tooth shark, Carcharias taurus (also known as the sandtiger or grey nurse shark), is widely distributed in warm-temperate and subtropical waters, but has suffered severe population declines across much of its range as a result of overexploitation. Here, we used multilocus genotype data to investigate the demographic history of the South African C. taurus population. Using approximate Bayesian computation and likelihood-based importance sampling, we found that the population underwent a historical range expansion that may have been linked to climatic changes during the late Pleistocene. There was no evidence for a recent anthropogenic decline. Together with census data suggesting a stable population, these results support the idea that fishing pressure and other threats have so far not been detrimental to the local C. taurus population. The results reported here indicate that South Africa could possibly harbour the last remaining, relatively pristine population of this widespread but vulnerable top predator.


Asunto(s)
Especies en Peligro de Extinción , Dinámica Poblacional/estadística & datos numéricos , Tiburones , Animales , Teorema de Bayes , Cadena Alimentaria , Funciones de Verosimilitud , Sudáfrica
6.
PLoS One ; 12(6): e0177897, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28594833

RESUMEN

Knowledge of the diet and trophic ecology of apex predators is key for the implementation of effective ecosystem as well as species-based management initiatives. Using a combination of stomach content data and stable isotope analysis (δ15N and δ13C) the current study provides information on size-based and sex-specific variations in diet, trophic position (TP) and foraging habitat of tiger sharks (Galeocerdo cuvier) caught in the KwaZulu-Natal Sharks Board bather protection program. This study presents the longest time-series and most detailed analysis of stomach content data for G. cuvier worldwide. Prey identified from 628 non-empty stomachs revealed a size-based shift in diet. Reptiles, birds, mysticetes, and large shark species increased in dietary importance with G. cuvier size, concomitant with a decrease in smaller prey such as batoids and teleosts. Seasonal and decadal shifts in diet driven primarily by changes in the importance of elasmobranchs and mammal (cetacean) prey were recorded for medium sized (150-220 cm) G. cuvier. Both stomach content and stable isotope analysis indicated that G. cuvier is a generalist feeder at the population level. Size-based δ13C profiles indicated a movement to offshore foraging habitats by larger G. cuvier. Calculated TP varied by method ranging from 4.0 to 5.0 (TPSCA for stomach contents) and from 3.6 to 4.5 (TPscaled and TPadditive for δ15N). Large (> 220 cm) G. cuvier did not feed at discrete trophic levels, but rather throughout the food web. These data provide key information on the ecological role of G. cuvier to improve the accuracy of regional food web modelling. This will enable a better understanding of the ecological impacts related to changes in the abundance of this predator.


Asunto(s)
Dieta , Cadena Alimentaria , Tiburones/fisiología , Agua , Animales , Tamaño Corporal , Isótopos de Carbono , Femenino , Geografía , Modelos Lineales , Masculino , Análisis Multivariante , Isótopos de Nitrógeno , Conducta Predatoria , Sudáfrica , Estómago/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA