Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Genet Metab ; 140(3): 107668, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549443

RESUMEN

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a relatively common inborn error of metabolism, but due to difficulty in accurately predicting affected status through newborn screening, molecular confirmation of the causative variants by sequencing of the ACADVL gene is necessary. Although the ACMG/AMP guidelines have helped standardize variant classification, ACADVL variant classification remains disparate due to a phenotype that can be nonspecific, the possibility of variants that produce late-onset disease, and relatively high carrier frequency, amongst other challenges. Therefore, an ACADVL-specific variant curation expert panel (VCEP) was created to facilitate the specification of the ACMG/AMP guidelines for VLCADD. We expect these guidelines to help streamline, increase concordance, and expedite the classification of ACADVL variants.


Asunto(s)
Errores Innatos del Metabolismo Lipídico , Enfermedades Mitocondriales , Enfermedades Musculares , Humanos , Recién Nacido , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Pruebas Genéticas , Variación Genética , Errores Innatos del Metabolismo Lipídico/diagnóstico , Errores Innatos del Metabolismo Lipídico/genética , Enfermedades Mitocondriales/genética , Enfermedades Musculares/genética
2.
Biochim Biophys Acta ; 1829(6-7): 695-707, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23328451

RESUMEN

The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Asunto(s)
Proteína delta de Unión al Potenciador CCAAT , Precursores del ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , Empalme Alternativo , Animales , Proteína delta de Unión al Potenciador CCAAT/química , Proteína delta de Unión al Potenciador CCAAT/genética , Drosophila/genética , Exorribonucleasas/genética , Humanos , Procesamiento Proteico-Postraduccional/genética , Precursores del ARN/química
3.
Trends Genet ; 27(7): 286-93, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21640425

RESUMEN

Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.


Asunto(s)
Estabilidad del ARN , ARN Viral/genética , Animales , Evolución Molecular , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Transcripción Genética
4.
J Biol Chem ; 287(43): 36229-38, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22915590

RESUMEN

We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3' untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3' UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3' UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein.


Asunto(s)
Infecciones por Alphavirus/metabolismo , Alphavirus/metabolismo , Citoplasma/metabolismo , Proteínas ELAV/metabolismo , Procesamiento Proteico-Postraduccional , Regiones no Traducidas 3'/fisiología , Alphavirus/genética , Infecciones por Alphavirus/genética , Animales , Caspasas/genética , Caspasas/metabolismo , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/virología , Proteínas ELAV/genética , Regulación Viral de la Expresión Génica/fisiología , Células HEK293 , Humanos , Fosforilación/genética , Transporte de Proteínas/genética , Proteolisis , ARN Viral/genética , ARN Viral/metabolismo , Células Vero
5.
Hum Mol Genet ; 18(9): 1600-11, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19228773

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease caused by the loss of survival motor neuron-1 (SMN1). A nearly identical copy gene, SMN2, is present in all SMA patients, which produces low levels of functional protein. Although the SMN2 coding sequence has the potential to produce normal, full-length SMN, approximately 90% of SMN2-derived transcripts are alternatively spliced and encode a truncated protein lacking the final coding exon (exon 7). SMN2, however, is an excellent therapeutic target. Previously, we developed bifunctional RNAs that bound SMN exon 7 and modulated SMN2 splicing. To optimize the efficiency of the bifunctional RNAs, a different antisense target was required. To this end, we genetically verified the identity of a putative intronic repressor and developed bifunctional RNAs that target this sequence. Consequently, there is a 2-fold mechanism of SMN induction: inhibition of the intronic repressor and recruitment of SR proteins via the SR recruitment sequence of the bifunctional RNA. The bifunctional RNAs effectively increased SMN in human primary SMA fibroblasts. Lead candidates were synthesized as 2'-O-methyl RNAs and were directly injected in the central nervous system of SMA mice. Single-RNA injections were able to illicit a robust induction of SMN protein in the brain and throughout the spinal column of neonatal SMA mice. In a severe model of SMA, mean life span was extended following the delivery of bifunctional RNAs. This technology has direct implications for the development of an SMA therapy, but also lends itself to a multitude of diseases caused by aberrant pre-mRNA splicing.


Asunto(s)
Terapia Genética , Intrones , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , ARN sin Sentido/uso terapéutico , Secuencias Reguladoras de Ácidos Nucleicos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , ARN sin Sentido/química , ARN sin Sentido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
7.
Biochem Biophys Res Commun ; 375(1): 33-7, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18675250

RESUMEN

Gemin4 is a ubiquitously expressed multifunctional protein that is involved in U snRNP assembly, apoptosis, nuclear/cytoplasmic transportation, transcription, and RNAi pathways. Gemin4 is one of the core components of the Gemin-complex, which also contains survival motor neuron (SMN), the seven Gemin proteins (Gemin2-8), and Unrip. Mutations in the SMN1 gene cause the autosomal recessive disorder spinal muscular atrophy (SMA). Although the functions assigned to Gemin4 predominantly occur in the nucleus, the mechanisms that mediate the nuclear import of Gemin4 remain unclear. Here, using a novel panel of Gemin4 constructs we identify a canonical nuclear import sequence (NLS) in the N-terminus of Gemin4. The Gemin4 NLS is necessary and independently sufficient to mediate nuclear import of Gemin4. This is the first functional NLS identified within the SMN-Gemin complex.


Asunto(s)
Señales de Localización Nuclear/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citoplasma/metabolismo , Células HeLa , Humanos , Antígenos de Histocompatibilidad Menor , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Señales de Localización Nuclear/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora
8.
Wiley Interdiscip Rev RNA ; 1(1): 173-92, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21956913

RESUMEN

An increasing number of dominantly inherited diseases have now been linked with expansion of short repeats within specific genes. Although some of these expansions affect protein function or result in haploinsufficiency, a significant portion cause pathogenesis through production of toxic RNA molecules that alter cellular metabolism. In this review, we examine the criteria that influence toxicity of these mutant RNAs and discuss new developments in therapeutic approaches.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Enfermedad/genética , ARN/genética , ARN/fisiología , ARN/toxicidad , Animales , Regulación de la Expresión Génica/genética , Terapia Genética/métodos , Humanos , Modelos Biológicos , Mutación/fisiología , Biosíntesis de Proteínas/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Secuencias Reguladoras de Ácido Ribonucleico/fisiología
9.
Cell Host Microbe ; 8(2): 196-207, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20709296

RESUMEN

How viral transcripts are protected from the cellular RNA decay machinery and the importance of this protection for the virus are largely unknown. We demonstrate that Sindbis virus, a prototypical single-stranded arthropod-borne alphavirus, uses U-rich 3' UTR sequences in its RNAs to recruit a known regulator of cellular mRNA stability, the HuR protein, during infections of both human and vector mosquito cells. HuR binds viral RNAs with high specificity and affinity. Sindbis virus infection induces the selective movement of HuR out of the mammalian cell nucleus, thereby increasing the available cytoplasmic HuR pool. Finally, knockdown of HuR results in a significant increase in the rate of decay of Sindbis virus RNAs and diminishes viral yields in both human and mosquito cells. These data indicate that Sindbis virus and likely other alphaviruses usurp the HuR protein to avoid the cellular mRNA decay machinery and maintain a highly productive infection.


Asunto(s)
Infecciones por Alphavirus/virología , Antígenos de Superficie/fisiología , Proteínas de Unión al ARN/fisiología , Virus Sindbis/fisiología , Regiones no Traducidas 3'/fisiología , Aedes/virología , Animales , Antígenos de Superficie/metabolismo , Línea Celular , Citoplasma/metabolismo , Citoplasma/virología , Proteínas ELAV , Proteína 1 Similar a ELAV , Interacciones Huésped-Patógeno , Humanos , Estabilidad del ARN , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Virus Sindbis/patogenicidad , Replicación Viral
10.
Hum Gene Ther ; 19(11): 1307-15, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19848583

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder and is the leading genetic cause of infant mortality. SMA is caused by the loss of survival motor neuron-1 (SMN1). In humans, a nearly identical copy gene is present called SMN2, but this gene cannot compensate for the loss of SMN1 because of a single silent nucleotide difference in SMN2 exon 7. This single-nucleotide difference attenuates an exonic splice enhancer, resulting in the production of an alternatively spliced isoform lacking exon 7, which is essential for protein function. SMN2, however, is a critical disease modifier and is an outstanding target for therapeutic intervention because all SMA patients retain SMN2 and SMN2 maintains the same coding sequence as SMN1. Therefore, compounds or molecules that increase SMN2 exon 7 inclusion hold great promise for SMA therapeutics. Bifunctional RNAs have been previously used to increase SMN protein levels and derive their name from the presence of two domains: an antisense RNA sequence specific to the target RNA and an untethered RNA segment that serves as a binding platform for splicing factors. This study was designed to develop negatively acting bifunctional RNAs that recruit hnRNPA1 to exon 8 and block the general splicing machinery from the exon 8. By blocking the downstream splice site, this could competitively favor the inclusion of SMN exon 7 and therefore increase full-length SMN production. Here we identify a bifunctional RNA that stimulated full-length SMN expression in a variety of cell-based assays including SMA patient fibroblasts. Importantly, this molecule was also able to induce SMN expression in a previously described mouse model of SMA and demonstrates a novel therapeutic approach for SMA as well as a variety of diseases caused by a defect in splicing.


Asunto(s)
Fibroblastos/metabolismo , Atrofia Muscular Espinal/metabolismo , Empalme del ARN/genética , ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Exones/genética , Vectores Genéticos , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Técnicas In Vitro , Luciferasas , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/genética , ARN/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/fisiología
11.
Mol Ther ; 14(1): 54-62, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16580882

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is the leading genetic cause of infant mortality. SMA is caused by the loss of survival motor neuron-1 (SMN1). In humans, a nearly identical copy gene is present, called SMN2. SMN2 is retained in all SMA patients and encodes an identical protein compared to SMN1. However, a single silent nucleotide difference in SMN2 exon 7 results in the production of a spliced isoform (called SMNDelta7) that encodes a nonfunctional protein. The presence of SMN2 represents a unique therapeutic target since SMN2 has the capacity to encode a fully functional protein. Here we describe an in vivo delivery system for short bifunctional RNAs that modulate SMN2 splicing. Bifunctional RNAs derive their name from the presence of two domains: an antisense RNA sequence specific to a target RNA and an untethered RNA segment that serves as a binding platform for splicing factors. Plasmid-based and recombinant adeno-associated virus vectors were developed that expressed bifunctional RNAs that stimulated SMN2 exon 7 inclusion and full-length SMN protein in patient fibroblasts. These experiments provide a mechanism to modulate splicing from a variety of genetic contexts and demonstrate directly a novel therapeutic approach for SMA.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Dependovirus/genética , Vectores Genéticos/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , ARN/genética , Western Blotting , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Exones/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Células HeLa , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Microscopía Fluorescente , Modelos Genéticos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Proteínas del Tejido Nervioso/metabolismo , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA