Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(3): 475-487.e11, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31759822

RESUMEN

How repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18). This facilitates the contacts of AEs with distant CTCF sites near promoter of other cell-cycle genes, which also become hyperacetylated at H3K18. These changes ensure basal transcription of cell-cycle genes and are critical for their re-activation upon serum re-exposure. Our study reveals how direct manipulation of the epigenetic state of AEs by a general transcription factor regulates 3D genome folding and expression.


Asunto(s)
Elementos Alu/fisiología , Histonas/metabolismo , Factores de Transcripción TFIII/metabolismo , Acetilación , Elementos Alu/genética , Línea Celular , Cromatina/metabolismo , Cromatina/fisiología , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Histonas/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , ARN Polimerasa III/metabolismo , Factores de Transcripción TFIII/genética , Transcripción Genética/genética
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474280

RESUMEN

Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct sequence-specific interaction through the formation of RNA:DNA triplexes. In an effort to develop a novel strategy for characterizing a triple-helix formation, we employed atomic force microscopy (AFM) to visualize and study a regulatory RNA:DNA triplex formed between the Khps1 lncRNA and the enhancer of the proto-oncogene SPHK1. The analysis demonstrates the successful formation of RNA:DNA triplexes under various conditions of pH and temperature, indicating the effectiveness of the AFM strategy. Despite challenges in discriminating between the triple-helix and R-loop configurations, this approach opens new perspectives for investigating the role of lncRNAs in gene regulation at the single-molecule level.


Asunto(s)
ARN Largo no Codificante , Secuencia de Bases , Microscopía de Fuerza Atómica , ARN Largo no Codificante/genética , Conformación de Ácido Nucleico , ADN/química
3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835038

RESUMEN

Regulation of histone acetylation dictates patterns of gene expression and hence cell identity. Due to their clinical relevance in cancer biology, understanding how human embryonic stem cells (hESCs) regulate their genomic patterns of histone acetylation is critical, but it remains largely to be investigated. Here, we provide evidence that acetylation of histone H3 lysine-18 (H3K18ac) and lysine-27 (H3K27ac) is only partially established by p300 in stem cells, while it represents the main histone acetyltransferase (HAT) for these marks in somatic cells. Our analysis reveals that whereas p300 marginally associated with H3K18ac and H3K27ac in hESCs, it largely overlapped with these histone marks upon differentiation. Interestingly, we show that H3K18ac is found at "stemness" genes enriched in RNA polymerase III transcription factor C (TFIIIC) in hESCs, whilst lacking p300. Moreover, TFIIIC was also found in the vicinity of genes involved in neuronal biology, although devoid of H3K18ac. Our data suggest a more complex pattern of HATs responsible for histone acetylations in hESCs than previously considered, suggesting a putative role for H3K18ac and TFIIIC in regulating "stemness" genes as well as genes associated with neuronal differentiation of hESCs. The results break ground for possible new paradigms for genome acetylation in hESCs that could lead to new avenues for therapeutic intervention in cancer and developmental diseases.


Asunto(s)
Epigénesis Genética , Histona Acetiltransferasas , Factores de Transcripción TFIII , Humanos , Acetilación , Células Madre Embrionarias , Epigénesis Genética/fisiología , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Factores de Transcripción TFIII/metabolismo
4.
Biochem Soc Trans ; 50(2): 723-736, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35285478

RESUMEN

Recent investigations on the non-protein-coding transcriptome of human cells have revealed previously hidden layers of gene regulation relying on regulatory non-protein-coding (nc) RNAs, including the widespread ncRNA-dependent regulation of epigenetic chromatin states and of mRNA translation and stability. However, despite its centrality, the epigenetic regulation of ncRNA genes has received relatively little attention. In this mini-review, we attempt to provide a synthetic account of recent literature suggesting an unexpected complexity in chromatin-dependent regulation of ncRNA gene transcription by the three human nuclear RNA polymerases. Emerging common features, like the heterogeneity of chromatin states within ncRNA multigene families and their influence on 3D genome organization, point to unexplored issues whose investigation could lead to a better understanding of the whole human epigenomic network.


Asunto(s)
Epigénesis Genética , ARN Largo no Codificante , Cromatina/genética , Epigenómica , Humanos , ARN Largo no Codificante/genética , ARN no Traducido/genética , Factores de Transcripción/genética , Transcripción Genética
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916983

RESUMEN

Transcription factors regulate gene activity by binding specific regions of genomic DNA thanks to a subtle interplay of specific and nonspecific interactions that is challenging to quantify. Here, we exploit Reflective Phantom Interface (RPI), a label-free biosensor based on optical reflectivity, to investigate the binding of the N-terminal domain of Gal4, a well-known gene regulator, to double-stranded DNA fragments containing or not its consensus sequence. The analysis of RPI-binding curves provides interaction strength and kinetics and their dependence on temperature and ionic strength. We found that the binding of Gal4 to its cognate site is stronger, as expected, but also markedly slower. We performed a combined analysis of specific and nonspecific binding-equilibrium and kinetics-by means of a simple model based on nested potential wells and found that the free energy gap between specific and nonspecific binding is of the order of one kcal/mol only. We investigated the origin of such a small value by performing all-atom molecular dynamics simulations of Gal4-DNA interactions. We found a strong enthalpy-entropy compensation, by which the binding of Gal4 to its cognate sequence entails a DNA bending and a striking conformational freezing, which could be instrumental in the biological function of Gal4.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Algoritmos , Secuencia de Bases , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinética , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
6.
Nucleic Acids Res ; 45(8): 4493-4506, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28158860

RESUMEN

Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Medios de Cultivo/química , Medios de Cultivo/farmacología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucosa/deficiencia , Glucosa/farmacología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Biogénesis de Organelos , Regiones Promotoras Genéticas , Regulón , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Int J Mol Sci ; 20(13)2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-31284509

RESUMEN

Alu retroelements, whose retrotransposition requires prior transcription by RNA polymerase III to generate Alu RNAs, represent the most numerous non-coding RNA (ncRNA) gene family in the human genome. Alu transcription is generally kept to extremely low levels by tight epigenetic silencing, but it has been reported to increase under different types of cell perturbation, such as viral infection and cancer. Alu RNAs, being able to act as gene expression modulators, may be directly involved in the mechanisms determining cellular behavior in such perturbed states. To directly address the regulatory potential of Alu RNAs, we generated IMR90 fibroblasts and HeLa cell lines stably overexpressing two slightly different Alu RNAs, and analyzed genome-wide the expression changes of protein-coding genes through RNA-sequencing. Among the genes that were upregulated or downregulated in response to Alu overexpression in IMR90, but not in HeLa cells, we found a highly significant enrichment of pathways involved in cell cycle progression and mitotic entry. Accordingly, Alu overexpression was found to promote transition from G1 to S phase, as revealed by flow cytometry. Therefore, increased Alu RNA may contribute to sustained cell proliferation, which is an important factor of cancer development and progression.


Asunto(s)
Elementos Alu/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , ARN/genética , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Sitios Genéticos , Genoma Humano , Células HeLa , Humanos , ARN/metabolismo
8.
Mol Cell ; 38(4): 614-20, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20513435

RESUMEN

Small nucleolar RNAs (snoRNAs) play a key role in ribosomal RNA biogenesis, yet factors controlling their expression are unknown. We found that the majority of Saccharomyces snoRNA promoters display an aRCCCTaa sequence motif at the upstream border of a TATA-containing nucleosome-free region. Genome-wide ChIP-seq analysis showed that these motifs are bound by Tbf1, a telomere-binding protein known to recognize mammalian-like T(2)AG(3) repeats at subtelomeric regions. Tbf1 has over 100 additional promoter targets, including several other genes involved in ribosome biogenesis and the TBF1 gene itself. Tbf1 is required for full snoRNA expression, yet it does not influence nucleosome positioning at snoRNA promoters. In contrast, Tbf1 contributes to nucleosome exclusion at non-snoRNA promoters, where it selectively colocalizes with the Tbf1-interacting zinc-finger proteins Vid22 and Ygr071c. Our data show that, besides the ribosomal protein gene regulator Rap1, a second telomere-binding protein also functions as a transcriptional regulator linked to yeast ribosome biogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas/genética , ARN Nucleolar Pequeño/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Biología Computacional , Secuencia Conservada , Proteínas de Unión al ADN/genética , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
9.
Nucleic Acids Res ; 44(13): 6113-26, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27016735

RESUMEN

In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control.


Asunto(s)
Proteínas de Unión al ADN/genética , Regiones Promotoras Genéticas , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/genética , Regulación Fúngica de la Expresión Génica , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas de Unión a Telómeros/genética , Transactivadores/genética , Factores de Transcripción/metabolismo
10.
Curr Genet ; 63(1): 65-68, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27262581

RESUMEN

In Saccharomyces cerevisiae, the large majority of the genes coding for cytoplasmic ribosomal proteins (RPs) depend on the general regulatory factor Rap1 for their transcription, but a small cohort of them relies on Abf1 regulatory activity. A recent study showed that unlike Rap1, whose association with RP gene promoters is not affected by environmental changes causing RP gene repression/reactivation, Abf1 association with both RP gene and ribosome biogenesis (Ribi) gene promoters dynamically responds to changes in growth conditions. This observation changes the paradigm of general regulatory factors as relatively static DNA-binding proteins constitutively bound to highly active promoters, and point to Abf1, which binds hundreds of non-RPG promoters within the yeast genome, as a possible key regulatory switch in nutrient- and stress-dependent transcriptional modulation. Moreover, the frequent presence of Abf1 binding sites in the promoters of mitochondrial RP genes evokes the possibility that Abf1 might orchestrate still unexplored levels of co-regulation involving growth-related gene networks in yeast cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Ribosomas/metabolismo , Factores de Transcripción/metabolismo , Levaduras/fisiología , Sitios de Unión , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nucleic Acids Res ; 43(2): 817-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25550429

RESUMEN

Of the ∼ 1.3 million Alu elements in the human genome, only a tiny number are estimated to be active in transcription by RNA polymerase (Pol) III. Tracing the individual loci from which Alu transcripts originate is complicated by their highly repetitive nature. By exploiting RNA-Seq data sets and unique Alu DNA sequences, we devised a bioinformatic pipeline allowing us to identify Pol III-dependent transcripts of individual Alu elements. When applied to ENCODE transcriptomes of seven human cell lines, this search strategy identified ∼ 1300 Alu loci corresponding to detectable transcripts, with ∼ 120 of them expressed in at least three cell lines. In vitro transcription of selected Alus did not reflect their in vivo expression properties, and required the native 5'-flanking region in addition to internal promoter. We also identified a cluster of expressed AluYa5-derived transcription units, juxtaposed to snaR genes on chromosome 19, formed by a promoter-containing left monomer fused to an Alu-unrelated downstream moiety. Autonomous Pol III transcription was also revealed for Alus nested within Pol II-transcribed genes. The ability to investigate Alu transcriptomes at single-locus resolution will facilitate both the identification of novel biologically relevant Alu RNAs and the assessment of Alu expression alteration under pathological conditions.


Asunto(s)
Elementos Alu , ARN Polimerasa III/metabolismo , Transcripción Genética , Perfilación de la Expresión Génica , Silenciador del Gen , Sitios Genéticos , Genómica/métodos , Humanos , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Transcriptoma
12.
Biochem Biophys Res Commun ; 474(4): 691-695, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27154225

RESUMEN

Hydroquinone (HQ) is an important benzene-derived metabolite associated with acute myelogenous leukemia risk. Although altered DNA methylation has been reported in both benzene-exposed human subjects and HQ-exposed cultured cells, the inventory of benzene metabolite effects on the epigenome is only starting to be established. In this study, we used a monocytic leukemia cell line (THP-1) and hematopoietic stem cells (HSCs) from cord blood to investigate the effects of HQ treatment on the expression of the three most important families of retrotransposons in the human genome: LINE-1, Alu and Endogenous retroviruses (HERVs), that are normally subjected to tight epigenetic silencing. We found a clear tendency towards increased retrotransposon expression in response to HQ exposure, more pronounced in the case of LINE-1 and HERV. Such a partial loss of silencing, however, was generally not associated with HQ-induced DNA hypomethylation. On the other hand, retroelement derepression was also observed in the same cells in response to the hypomethylating agent decitabine. These observations suggest the existence of different types of epigenetic switches operating at human retroelements, and point to retroelement activation in response to benzene-derived metabolites as a novel factor deserving attention in benzene carcinogenesis studies.


Asunto(s)
Metilación de ADN/genética , ADN/genética , Células Madre Hematopoyéticas/fisiología , Hidroquinonas/administración & dosificación , Leucemia/genética , Retroelementos/genética , Línea Celular , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Retroelementos/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
Biochim Biophys Acta ; 1829(3-4): 296-305, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23041497

RESUMEN

The RNA polymerase (Pol) III transcription system is devoted to the production of short, generally abundant noncoding (nc) RNAs in all eukaryotic cells. Previously thought to be restricted to a few housekeeping genes easily detectable in genome sequences, the set of known Pol III-transcribed genes (class III genes) has been expanding in the last ten years, and the issue of their detection, annotation and actual expression has been stimulated and revived by the results of recent high-resolution genome-wide location analyses of the mammalian Pol III machinery, together with those of Pol III-centered computational studies and of ncRNA-focused transcriptomic approaches. In this article, we provide an outline of distinctive features of Pol III-transcribed genes that have allowed and currently allow for their detection in genome sequences, we critically review the currently practiced strategies for the identification of novel class III genes and transcripts, and we discuss emerging themes in Pol III transcription regulation which might orient future transcriptomic studies. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Asunto(s)
Eucariontes/genética , Genoma , ARN Polimerasa III/metabolismo , ARN no Traducido/genética , Animales , Humanos , ARN Polimerasa III/genética , ARN Ribosómico 5S/biosíntesis , ARN Ribosómico 5S/genética , ARN no Traducido/biosíntesis , Transcripción Genética/genética , Transcriptoma/genética
14.
Biochim Biophys Acta ; 1829(3-4): 331-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23128323

RESUMEN

The retention of transcription proteins at an actively transcribed gene contributes to maintenance of the active transcriptional state and increases the rate of subsequent transcription cycles relative to the initial cycle. This process, called transcription reinitiation, generates the abundant RNAs in living cells. The persistence of stable preinitiation intermediates on activated genes representing at least a subset of basal transcription components has long been recognized as a shared feature of RNA polymerase (Pol) I, II and III-dependent transcription in eukaryotes. Studies of the Pol III transcription machinery and its target genes in eukaryotic genomes over the last fifteen years, has uncovered multiple details on transcription reinitiation. In addition to the basal transcription factors that recruit the polymerase, Pol III itself can be retained on the same gene through multiple transcription cycles by a facilitated recycling pathway. The molecular bases for facilitated recycling are progressively being revealed with advances in structural and functional studies. At the same time, progress in our understanding of Pol III transcriptional regulation in response to different environmental cues points to the specific mechanism of Pol III reinitiation as a key target of signaling pathway regulation of cell growth. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Asunto(s)
ARN Polimerasa III/metabolismo , Iniciación de la Transcripción Genética , Animales , Humanos , Factores de Transcripción TFIII/metabolismo , Terminación de la Transcripción Genética
15.
Biochim Biophys Acta ; 1833(6): 1511-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23485396

RESUMEN

FE65 proteins constitute a family of adaptors which modulates the processing of amyloid precursor protein and the consequent amyloid ß production. Thus, they have been involved in the complex and partially unknown cascade of reactions at the base of Alzheimer's disease etiology. However, FE65 and FE65-like proteins may be linked to neurodegeneration through the regulation of cell cycle in post-mitotic neurons. In this work we disclose novel molecular mechanisms by which APBB2 can modulate APP processing. We show that APBB2 mRNA splicing, driven by the over-expression of a novel non-coding RNA named 45A, allow the generation of alternative protein forms endowed with differential effects on Aß production, cell cycle control, and DNA damage response. 45A overexpression also favors cell transformation and tumorigenesis leading to a marked increase of malignancy of neuroblastoma cells. Therefore, our results highlight a novel regulatory pathway of considerable interest linking APP processing with cell cycle regulation and DNA-surveillance systems, that may represent a molecular mechanism to induce neurodegeneration in post-mitotic neurons.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/genética , Ciclo Celular , Neuroblastoma/patología , ARN Nuclear Pequeño/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloidosis/metabolismo , Animales , Apoptosis , Western Blotting , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Pruebas de Micronúcleos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Nucleic Acids Res ; 39(13): 5499-512, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21421562

RESUMEN

Human RNA polymerase (Pol) III-transcribed genes are thought to share a simple termination signal constituted by four or more consecutive thymidine residues in the coding DNA strand, just downstream of the RNA 3'-end sequence. We found that a large set of human tRNA genes (tDNAs) do not display any T(≥4) stretch within 50 bp of 3'-flanking region. In vitro analysis of tDNAs with a distanced T(≥4) revealed the existence of non-canonical terminators resembling degenerate T(≥5) elements, which ensure significant termination but at the same time allow for the production of Pol III read-through pre-tRNAs with unusually long 3' trailers. A panel of such non-canonical signals was found to direct transcription termination of unusual Pol III-synthesized viral pre-miRNA transcripts in gammaherpesvirus 68-infected cells. Genome-wide location analysis revealed that human Pol III tends to trespass into the 3'-flanking regions of tDNAs, as expected from extensive terminator read-through. The widespread occurrence of partial termination suggests that the Pol III primary transcriptome in mammals is unexpectedly enriched in 3'-trailer sequences with the potential to contribute novel functional ncRNAs.


Asunto(s)
ARN Polimerasa III/metabolismo , Regiones Terminadoras Genéticas , Transcripción Genética , Región de Flanqueo 3' , Animales , Línea Celular , Células HeLa , Humanos , Ratones , ARN de Transferencia/genética , Análisis de Secuencia de ADN
17.
Proc Natl Acad Sci U S A ; 106(34): 14265-70, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19706510

RESUMEN

Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells.


Asunto(s)
Proteínas de Unión al ADN/genética , ARN Polimerasa III/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética , Far-Western Blotting , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Cromosomas Fúngicos/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFIII/metabolismo
18.
Genomics ; 97(3): 166-72, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21147216

RESUMEN

The transcription start site (TSS) is useful to predict gene and to understand transcription initiation. Although vast data on mRNA TSSs are available, little is known about tRNA genes because of rapid processing. Using a tobacco in vitro transcription system under conditions of impaired 5' end processing, TSSs were determined for 64 Arabidopsis tRNA genes. This analysis revealed multiple TSSs distributed in a region from 10 to 2bp upstream of the mature tRNA coding sequence (-10 to -2). We also analyzed 31 Saccharomyces cerevisiae tRNA genes that showed a smaller number but a broader distribution (-13 to -1) of TSSs. In both cases, transcription was initiated preferentially at adenosine, and a common 'TCAACA' sequence was found spanning the TSSs. In plant, this motif caused multiple TSSs to converge at one site and enhanced transcription. The TATA-like sequence upstream of Arabidopsis tRNA genes also contributed to TSS selection.


Asunto(s)
Arabidopsis/genética , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética/genética , Análisis de Secuencia de ARN
19.
Int J Mol Sci ; 13(11): 14813-27, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23203095

RESUMEN

A series of recent studies demonstrated an unexpectedly high frequency of intronic RNA polymerase (pol) III transcription units spread throughout the human genome. The investigation of a subset of these transcripts revealed their tissue/cell-specific transcription together with the involvement in relevant physiopathological pathways. Despite this evidence, these transcripts did not seem to have murine orthologs, based on their nucleotide sequence, resulting in a limitation of the experimental approaches aimed to study their function. In this work, we have extended our investigation to the murine genome identifying 121 pairs of mouse/human transcripts displaying syntenic subchromosomal localization. The analysis in silico of this set of putative noncoding (nc)RNAs suggest their association with alternative splicing as suggested by recent experimental evidence. The investigation of one of these pairs taken as experimental model in mouse hippocampal neurons provided evidence of a human/mouse functional homology that does not depend on underlying sequence conservation. In this light, the collection of transcriptional units here reported can be considered as a novel source for the identification and the study of novel regulatory elements involved in relevant biological processes.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , TATA Box , Transcriptoma , Empalme Alternativo , Animales , Secuencia de Bases , Encéfalo/metabolismo , Mapeo Cromosómico , Secuencia Conservada , Perfilación de la Expresión Génica , Genoma , Humanos , Intrones , Proteínas de Interacción con los Canales Kv/química , Proteínas de Interacción con los Canales Kv/genética , Ratones , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Canales de Potasio/genética , Canales de Potasio/metabolismo , Células Piramidales/metabolismo , ARN Polimerasa III/metabolismo , Transcripción Genética
20.
Neurobiol Dis ; 41(2): 308-17, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20888417

RESUMEN

Alternative splicing is a central component of human brain complexity; nonetheless, its regulatory mechanisms are still largely unclear. In this work, we describe a novel non-coding (nc) RNA (named 17A) RNA polymerase (pol) III-dependent embedded in the human G-protein-coupled receptor 51 gene (GPR51, GABA B2 receptor). The stable expression of 17A in SHSY5Y neuroblastoma cells induces the synthesis of an alternative splicing isoform that abolish GABA B2 intracellular signaling (i.e., inhibition of cAMP accumulation and activation of K(+) channels). Indeed, 17A is expressed in human brain, and we report that it is upregulated in cerebral tissues derived from Alzheimer disease patients. We demonstrate that 17A expression in neuroblastoma cells enhances the secretion of amyloid ß peptide (Aß) and the Aß x-42/Αß x-40 peptide ratio and that its synthesis is induced in response to inflammatory stimuli. These data correlate, for the first time, the activity of a novel pol III-dependent ncRNA to alternative splicing events and, possibly, to neurodegeneration induced by abnormal GABA B function. We anticipate that further analysis of pol III-dependent regulation of alternative splicing will disclose novel regulatory pathways associated to brain physiology and/or pathology.


Asunto(s)
Empalme Alternativo/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Mediadores de Inflamación/fisiología , ARN no Traducido/genética , Receptores de GABA-A/genética , Transducción de Señal/genética , Enfermedad de Alzheimer/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Células HeLa , Humanos , Mediadores de Inflamación/metabolismo , Datos de Secuencia Molecular , ARN Polimerasa III/genética , ARN Polimerasa III/fisiología , ARN Largo no Codificante , ARN no Traducido/farmacología , ARN no Traducido/fisiología , Receptores de GABA-A/química , Receptores de GABA-A/fisiología , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA