Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Biol ; 11(2): e1001485, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23431266

RESUMEN

When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adolescente , Adulto , Anciano , Animales , Glucosa , Humanos , Lipólisis/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Niacina/farmacología , Esterol Esterasa/metabolismo , Adulto Joven
2.
J Neuroinflammation ; 11: 155, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25224537

RESUMEN

BACKGROUND: The postnatal period is a critical time window during which inflammatory events have significant and enduring effects on the brain, and as a consequence, induce alterations of emotional behavior and/or cognition later in life. However, the long-term effect of neonatal inflammation on behavior during adolescence, a sensitive period for the development of neurodevelopmental psychiatric disorders, has been little studied. In this study, we examined whether an early-life inflammatory challenge could alter emotional behaviors and spatial memory at adolescence and adulthood and whether stress axis activity, inflammatory response and neurogenesis were affected. METHODS: Lipopolysaccharide (LPS, 100 µg/kg) was administered to mice on postnatal day (PND) 14 and cytokine expression was measured in the plasma and in brain structures 3 hours later. Anxiety-like and depressive-like behavior (measured in the novelty-suppressed feeding test and the forced swim test, respectively) and spatial memory (Y-maze test) were measured at adolescence (PND30) and adulthood (PND90). Hypothalamic-pituitary-adrenal (HPA) axis activity (plasma corticosterone and glucocorticoid receptors in the hippocampus and prefrontal cortex) was measured at adulthood. In addition, the impact of a novel adult LPS challenge (100 µ/kg) was measured on spatial memory (Y-maze test), neurogenesis (doublecortin-positive cell numbers in the hippocampus) and plasma cytokine expression. RESULTS: First, we show in PND14 pups that a peripheral administration of LPS induced the expression of pro- and anti-inflammatory cytokines in the plasma and brain structures that were studied 3 hours after administration. Anxiety-like behavior was altered in adolescent, but not in adult, mice, whereas depressive-like behavior was spared at adolescence and increased at adulthood. This was accompanied by a decreased phosphorylation of the glucocorticoid receptor in the prefrontal cortex, with no effect on corticosterone levels. Second, neonatal LPS treatment had no effect on spatial memory in adolescence and adulthood. However, a second challenge of LPS in adulthood impaired spatial memory performance and neurogenesis and increased circulating levels of CCL2. CONCLUSIONS: Our study shows for the first time, in mice, that a peripheral LPS treatment at PND14 differentially alters emotional behaviors, but not spatial memory, at adolescence and adulthood. The behavioral effect of LPS at PND14 could be attributed to HPA axis deregulation and neurogenesis impairment.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/fisiopatología , Inflamación/complicaciones , Neurogénesis/fisiología , Memoria Espacial/fisiología , Animales , Animales Recién Nacidos , Western Blotting , Encéfalo/patología , Femenino , Sistema Hipotálamo-Hipofisario/fisiopatología , Inmunohistoquímica , Inflamación/patología , Inflamación/fisiopatología , Lipopolisacáridos/toxicidad , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Brain Behav Immun ; 41: 10-21, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24681251

RESUMEN

Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated conditions and enhances activation of neurobiological mechanisms underlying depression after immune stimulation. They suggest therefore that obesity, and possibly obesity-associated inflammatory priming, may represent a vulnerability state to immune-mediated depressive symptoms.


Asunto(s)
Ansiedad/etiología , Encéfalo/enzimología , Trastornos del Conocimiento/etiología , Depresión/etiología , Dieta Occidental/efectos adversos , Indolamina-Pirrol 2,3,-Dioxigenasa/fisiología , Obesidad/enzimología , Animales , Ansiedad/enzimología , Ansiedad/psicología , Conducta Animal , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/psicología , Citocinas/biosíntesis , Citocinas/sangre , Citocinas/genética , Depresión/enzimología , Depresión/psicología , Endotoxinas , Activación Enzimática , Regulación de la Expresión Génica , Hormonas/sangre , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/fisiología , Neuroinmunomodulación/fisiología , Obesidad/etiología , Obesidad/fisiopatología , Obesidad/psicología
4.
Foods ; 12(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38231613

RESUMEN

Aging is characterized by a decline in social behavior and cognitive functions leading to a decrease in life quality. In a previous study, we show that a fish hydrolysate supplementation prevents age-related decline in spatial short-term memory and long-term memory and anxiety-like behavior and improves the stress response in aged mice. The aim of this study was to determine the effects of a fish hydrolysate enriched with EPA/DHA or not on the cognitive ability and social interaction during aging and the biological mechanisms involved. We showed for the first time that a fish hydrolysate enriched with EPA/DHA or not improved memory performance and preference for social novelty that were diminished by aging. These changes were associated with the modulation of the gut microbiota, normalization of corticosterone, and modulation of the expression of genes involved in the mitochondrial respiratory chain, circadian clock, neuroprotection, and antioxidant activity. Thus, these changes may contribute to the observed improvements in social behavior and memory and reinforced the innovative character of fish hydrolysate in the prevention of age-related impairments.

5.
Foods ; 11(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35681342

RESUMEN

Over the past several decades, stress has dramatically increased in occidental societies. The use of natural resources, such as fish hydrolysates, may be an attractive strategy to improve stress management. Our previous study demonstrated the anxiolytic effects of fish hydrolysate supplementation in mice exposed to acute mild stress by limiting stress-induced corticosterone release and modulating the expression of a number of stress-responsive genes. Here, we explore hippocampal protein modulation induced by fish hydrolysate supplementation in mice submitted to acute mild stress, with the aim of better elucidating the underlying mechanisms. Hippocampi from the same cohort of Balb/c mice supplemented with fish hydrolysate (300 mg·kg-1 body weight) or vehicle daily for seven days before being submitted or not to an acute mild stress protocol (four groups, n = 8/group) were subjected to label-free quantitative proteomics analysis combined with gene ontology data mining. Our results show that fish hydrolysate supplementation prevented the observed stress-induced dysregulation of proteins relative to mitochondrial pathways and the neuronal network. These findings suggest that fish hydrolysate represents an innovative strategy to prevent the adverse effects of stress and participate in stress management.

6.
Nutrients ; 13(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801489

RESUMEN

Neuroinflammation constitutes a normal part of the brain immune response orchestrated by microglial cells. However, a sustained and uncontrolled production of proinflammatory factors together with microglial activation contribute to the onset of a chronic low-grade inflammation, leading to neuronal damage and cognitive as well as behavioral impairments. Hence, limiting brain inflammatory response and improving the resolution of inflammation could be particularly of interest to prevent these alterations. Dietary n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides are good candidates because of their immunomodulatory and proresolutive properties. These compounds are present in a fish hydrolysate derived from marine-derived byproducts. In this study, we compared the effect of an 18-day supplementation with this fish hydrolysate to a supplementation with docosahexaenoic acid (DHA) on lipopolysaccharide (LPS)-induced inflammation in mice. In response to peripherally injected LPS, the fish hydrolysate supplementation decreased the hippocampal mRNA expression of the proinflammatory cytokines IL-6 (p < 0.001), IL-1ß (p = 0.0008) and TNF-α (p < 0.0001), whereas the DHA supplementation reduced only the expression of IL-6 (p = 0.004). This decline in proinflammatory cytokine expressions was associated with an increase in the protein expression of IκB (p = 0.014 and p = 0.0054 as compared to the DHA supplementation and control groups, respectively) and to a modulation of microglial activation markers in the hippocampus. The beneficial effects of the fish hydrolysate could be due in part to the switch of the hippocampal oxylipin profile towards a more anti-inflammatory profile as compared to the DHA supplementation. Thus, the valorization of fish byproducts seems very attractive to prevent and counteract neuroinflammation.


Asunto(s)
Antiinflamatorios/farmacología , Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados/farmacología , Inflamación/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Neuronas/efectos de los fármacos , Animales , Citocinas/metabolismo , Ácidos Docosahexaenoicos/farmacología , Peces , Alimentos Fortificados , Hipocampo/metabolismo , Proteínas I-kappa B/metabolismo , Inflamación/inducido químicamente , Interleucina-1beta , Interleucina-6/metabolismo , Activación de Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Oxilipinas/metabolismo , Péptidos , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Front Nutr ; 8: 750292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888336

RESUMEN

Brain aging is characterized by a chronic low-grade inflammation, which significantly impairs cognitive function. Microglial cells, the immunocompetent cells of the brain, present a different phenotype, switching from a homeostatic signature (M0) to a more reactive phenotype called "MGnD" (microglial neurodegenerative phenotype), leading to a high production of pro-inflammatory cytokines. Furthermore, microglial cells can be activated by age-induced gut dysbiosis through the vagus nerve or the modulation of the peripheral immune system. Nutrients, in particular n-3 long chain polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides, display powerful immunomodulatory properties, and can thus prevent age-related cognitive decline. The objective of this study was to investigate the effects of n-3 LC-PUFAs and low molecular weight peptides contained in a marine by-product-derived hydrolysate on microglial phenotypes and intestinal permeability and their consequences on cognition in mice. We demonstrated that the hydrolysate supplementation for 8 weeks prevented short- and long-term memory decline during aging. These observations were linked to the modulation of microglial signature. Indeed, the hydrolysate supplementation promoted homeostatic microglial phenotype by increasing TGF-ß1 expression and stimulated phagocytosis by increasing Clec7a expression. Moreover, the hydrolysate supplementation promoted anti-inflammatory intestinal pathway and tended to prevent intestinal permeability alteration occurring during aging. Therefore, the fish hydrolysate appears as an interesting candidate to prevent cognitive decline during aging.

8.
Nutrients ; 12(3)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121189

RESUMEN

: Aging is associated to cognitive decline, which can lead to loss of life quality, personal suffering, and ultimately neurodegenerative diseases. Neuroinflammation is one of the mechanisms explaining the loss of cognitive functions. Indeed, aging is associated to the activation of inflammatory signaling pathways, which can be targeted by specific nutrients with anti-inflammatory effects. Dietary n-3 polyunsaturated fatty acids (PUFAs) are particularly attractive as they are present in the brain, possess immunomodulatory properties, and are precursors of lipid derivates named specialized pro-resolving mediators (SPM). SPMs are crucially involved in the resolution of inflammation that is modified during aging, resulting in chronic inflammation. In this review, we first examine the effect of aging on neuroinflammation and then evaluate the potential beneficial effect of n-3 PUFA as precursors of bioactive derivates, particularly during aging, on the resolution of inflammation. Lastly, we highlight evidence supporting a role of n-3 PUFA during aging.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Ácidos Grasos Omega-3/farmacología , Inflamación/patología , Animales , Humanos , Metabolismo de los Lípidos/efectos de los fármacos
9.
Nutrients ; 12(6)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549250

RESUMEN

Background: Two different species of sage, Salvia officinalis and Salvia lavandulaefolia, have demonstrated activities in cognitive function during preclinical and clinical studies related to impaired health situations or single administration. Different memory processes have been described to be significantly and positively impacted. Objective: Our objective is to explore the potential of these Salvia, and their additional activities, in healthy situations, and during prolonged administration, on memory and subsequent mechanisms of action related to putative effects. Design: This mouse study has implicated four investigational arms dedicated to control, Salvia officinalis aqueous extract, Salvia lavandulaefolia-encapsulated essential oil and a mix thereof (Cognivia™) for 2 weeks of administration. Cognitive functions have been assessed throughout Y-maze and Morris water maze models. The impact of supplementation on lipid peroxidation, oxidative stress, neurogenesis, neuronal activity, neurotrophins, neurotrophin receptors, CaM kinase II and glucocorticoid receptors has been assessed via post-interventional tissue collection. Results: All Salvia groups had a significant effect on Y-maze markers on day 1 of administration. Only the mix of two Salvia species demonstrated significant improvements in Morris water maze markers at the end of administration. Considering all biological and histological markers, we did not observe any significant effect of S. officinalis, S. lavandulaefolia and a mix of Salvia supplementation on lipid peroxidation, oxidative stress and neuronal plasticity (neurogenesis, neuronal activity, neurotrophins). Interestingly, CaM kinase II protein expression is significantly increased in animals supplemented with Salvia. Conclusion: The activities of Salvia alone after one intake have been confirmed; however, a particular combination of different types of Salvia have been shown to improve memory and present specific synergistic effects after chronic administration in healthy mice.


Asunto(s)
Cognición/efectos de los fármacos , Prueba del Laberinto Acuático de Morris , Extractos Vegetales/administración & dosificación , Salvia officinalis/química , Salvia/química , Adulto , Animales , Suplementos Dietéticos , Sinergismo Farmacológico , Humanos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
10.
Food Sci Nutr ; 7(11): 3827-3841, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31763032

RESUMEN

Rhodiola rosea L. (R. rosea) is an adaptogenic plant increasing body resistance to stress. Its efficacy has been evidenced mainly in chronic stress models, data concerning its effect in acute stress and underlying mechanisms being scarce. The objective was to investigate the effect of repeated doses of a R. rosea hydroethanolic root extract (HRE) on hypothalamic pituitary adrenal response in a murine model of acute mild stress and also the mechanisms involved. Stress response was measured in Balb/c mice having received by gavage HRE (5 g/kg) or vehicle daily for 2 weeks before being submitted to an acute mild stress protocol (open-field test then elevated plus maze). Corticosterone was measured in plasma from mandibular vein blood drawn before and 30, 60, and 90 min after initiation of the stress protocol. Mice were sacrificed at 90 min, and the hippocampus, prefrontal cortex, and amygdala were excised for high-frequency RT-PCR gene expression analysis. At 30 min after acute mild stress induction, corticosterone level in mice having received the HRE was lower than in control mice and comparable to that in nonstressed mice in the HRE group. HRE administration induced brain structure-dependent changes in expression of several stress-responsive genes implicated in neuronal structure, HPA axis activation, and circadian rhythm. In the acute mild stress model used, R. rosea HRE decreased corticosterone level and increased expression of stress-responsive genes, especially in the hippocampus and prefrontal cortex. These findings suggest that R. rosea HRE could be of value for modulating reactivity to acute mild stress.

11.
Psychoneuroendocrinology ; 40: 48-59, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24485475

RESUMEN

Although peripheral low-grade inflammation has been associated with a high incidence of mood symptoms in patients with metabolic syndrome (MetS), much less is known about the potential involvement of brain activation of cytokines in that context. Recently we showed in a mouse model of MetS, namely the db/db mice, an enhanced hippocampal inflammation associated with increased anxiety-like behavior (Dinel et al., 2011). However, depressive-like behavior was not affected in db/db mice. Based on the strong association between depressive-like behavior and cytokine-induced brain activation of indoleamine 2,3-dioxygenase (IDO), the enzyme that metabolizes tryptophan along the kynurenine pathway, these results may suggest an impairment of brain IDO activation in db/db mice. To test this hypothesis, we measured the ability of db/db mice and their healthy db/+ littermates to enhance brain IDO activity and depressive-like behavior after a systemic immune challenge with lipopolysaccharide (LPS). Here we show that LPS (5 µg/mouse) significantly increased depressive-like behavior (increased immobility time in a forced-swim test, FST) 24h after treatment in db/+ mice, but not in db/db mice. Interestingly, db/db mice also displayed after LPS treatment blunted increase of brain kynurenine/tryptophan ratio compared to their db/+ counterparts, despite enhanced induction of hippocampal cytokine expression (interleukin-1ß, tumor necrosis factor-α). Moreover, this was associated with an impaired effect of LPS on hippocampal expression of the brain-derived neurotrophic factor (BDNF) that contributes to mood regulation, including under inflammatory conditions. Collectively, these data indicate that the rise in brain tryptophan catabolism and depressive-like behavior induced by innate immune system activation is impaired in db/db mice. These findings could have relevance in improving the management and treatment of inflammation-related complications in MetS.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Depresión/inducido químicamente , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Lipopolisacáridos/farmacología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/psicología , Animales , Encéfalo/metabolismo , Depresión/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Quinurenina/metabolismo , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Receptores de Leptina/genética , Triptófano/metabolismo
12.
PLoS One ; 6(9): e24325, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21949705

RESUMEN

Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS). However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus) of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device), but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task), but unaltered object recognition memory (hippocampus-independent task). In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1ß, tumor necrosis factor-α and interleukin-6) and reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.


Asunto(s)
Cognición , Emociones , Hipocampo/fisiopatología , Síndrome Metabólico/fisiopatología , Animales , Ansiedad/complicaciones , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inflamación/metabolismo , Inflamación/fisiopatología , Masculino , Trastornos de la Memoria/complicaciones , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Ratones , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA