Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
FASEB J ; 36(3): e22180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129860

RESUMEN

P75 pan-neurotrophin receptor (p75NTR) is an important receptor for the role of neurotrophins in survival and death of neurons during development and after nerve injury. Our previous research found that the precursor of brain-derived neurotrophic factor (proBDNF) regulates pain as an inflammatory mediator. The current understanding of the role of proBDNF/p75NTR signaling pathway in inflammatory arthritis pain and rheumatoid arthritis (RA) is unclear. We recruited 20 RA patients, 20 healthy donors (HDs), and 10 osteoarthritis (OA) patients. Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) of proBDNF and p75NTR in synovial membrane were performed and evaluated. We next examined the mRNA and protein expression of proBDNF/p75NTR signaling pathway in peripheral blood mononuclear cells (PBMCs) and synovial tissue. ELISA and flow cytometry were assessed between the blood of RA patients and HD. To induce RA, collagen-induced arthritis (CIA) were induced in mice. We found over-synovitis of RA synovial membrane compared to OA controls in histologic sections. P75NTR and sortilin mRNA, and proBDNF protein level were significantly increased in PBMCs of RA patients compared with the HD. Consistently, ELISA showed that p75NTR, sortilin, tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-10 (IL-10) levels in the serum of RA patients were increased compared with HD and p75NTR, sortilin were positively correlated with Disease Activity Score in 28 joints (DAS28). In addition, using flow cytometry we showed that the increased levels of proBDNF and p75NTR characterized in CD4+ and CD8+ T cells of RA patients were subsequently reversed with methotrexate (MTX) treatment. Furthermore, we found pathological changes, inflammatory pain, upregulation of the mRNA and protein expression of proBDNF/p75NTR signaling pathway, and upregulation of inflammatory cytokines in spinal cord using a well-established CIA mouse model. We showed intravenous treatment of recombinant p75ECD-Fc that biologically blocked all inflammatory responses and relieved inflammatory pain of animals with CIA. Our findings showed the involvement of proBDNF/p75NTR pathway in the RA inflammatory response and how blocking it with p75ECD-Fc may be a promising therapeutic treatment for RA.


Asunto(s)
Artritis Reumatoide/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Interleucinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Animales , Femenino , Humanos , Interleucinas/sangre , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Precursores de Proteínas/metabolismo , Membrana Sinovial/metabolismo , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/sangre
2.
J Clin Neurosci ; 81: 122-132, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33222901

RESUMEN

Treatments enhancing angiogenesis for chronic cerebral hypoperfusion (CCH) are still in the research stage. Although encephalomyosynangiosis (EMS) is a common indirect anastomosis for the treatment of CCH, the effectiveness to promote angiogenesis is not satisfactory. Vascular endothelial growth factors (VEGF) is a cytokine found to specifically act directly on vascular endothelial cells, promote neovascularization, and enhance capillary permeability. However, the short half life and unstable property of VEGF underlies the need to explore available delivery system. In this study, poly (lactide-co-glycolide) (PLGA) was used to prepare VEGF controlled-release microspheres. In vitro and in vivo analysis of release kinetics showed that the microspheres could release VEGF continuously within 30 days. Then, modified chronic cerebral hypoperfusion rat model was established by ligation of bilateral internal carotid artery and one vertebral artery. At 14 days after ischemia, the EMS and the VEGF microspheres injection were performed. At 30 days after the injection, the result of Morris water maze displayed that combinating VEGF microspheres and EMS significantly ameliorated cognitive deficit after ischemia. We observed that combinating VEGF microspheres and EMS could further significantly increase cerebral blood flow. We speculated that this enhancement of cerebral blood flow was attributed to more angiogenesis induced by combination of VEGF microspheres and EMS, which verified by more collateral circulation with cerebral angiography and higher expression of CD31 or α-SMA. Our study demonstrated that combinating VEGF-PLGA controlled-release microspheres could significantly promote angiogenesis in EMS-based CCH rats model, providing new ideas for clinical treatment of CCH.


Asunto(s)
Isquemia Encefálica/terapia , Microesferas , Neovascularización Fisiológica/efectos de los fármacos , Factores de Crecimiento Endotelial Vascular/farmacología , Animales , Circulación Cerebrovascular/efectos de los fármacos , Circulación Colateral , Preparaciones de Acción Retardada/farmacología , Células Endoteliales/efectos de los fármacos , Masculino , Poliésteres , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA