Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779918

RESUMEN

BACKGROUND AND AIMS: Circulating tumor cells (CTCs) are precursors of cancer metastasis. However, how CTCs evade immunosurveillance during hematogenous dissemination remains unclear. APPROACH AND RESULTS: We identified CTC-platelet adhesions by single-cell RNA sequencing and multiplex immunofluorescence of blood samples from multiple cancer types. Clinically, CTC-platelet aggregates were associated with significantly shorter progression-free survival and overall survival in patients with HCC. In vitro, ex vivo, and in vivo assays demonstrated direct platelet adhesions gifted cancer cells with an evasive ability from NK cell killing by upregulating inhibitory checkpoint CD155 (PVR cell adhesion molecule), therefore facilitating distant metastasis. Mechanistically, CD155 was transcriptionally regulated by the FAK/JNK/c-Jun cascade in a platelet contact-dependent manner. Further competition assays and cytotoxicity experiments revealed that CD155 on CTCs inhibited NK-cell cytotoxicity only by engaging with immune receptor TIGIT, but not CD96 and DNAM1, another 2 receptors for CD155. Interrupting the CD155-TIGIT interactions with a TIGIT antibody restored NK-cell immunosurveillance on CTCs and markedly attenuated tumor metastasis. CONCLUSIONS: Our results demonstrated CTC evasion from NK-cell-mediated innate immunosurveillance mainly through immune checkpoint CD155-TIGIT, potentially offering an immunotherapeutic strategy for eradicating CTCs.

2.
Proc Natl Acad Sci U S A ; 119(12): e2113877119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302884

RESUMEN

During continent­continent collision, does the downgoing continental plate underplate far inboard of the collisional boundary or does it subduct steeply into the mantle, and how is this geometry manifested in the mantle flow field? We test conflicting models for these questions for Earth's archetypal continental collision forming the Himalaya and Tibetan Plateau. Air-corrected helium isotope data (3He/4He) from 225 geothermal springs (196 from our group, 29 from the literature) delineate a boundary separating a Himalayan domain of only crustal helium from a Tibetan domain with significant mantle helium. This 1,000-km-long boundary is located close to the Yarlung-Zangbo Suture (YZS) in southern Tibet from 80 to 92°E and is interpreted to overlie the "mantle suture" where cold underplated Indian lithosphere is juxtaposed at >80 km depth against a sub-Tibetan incipiently molten asthenospheric mantle wedge. In southeastern Tibet, the mantle suture lies 100 km south of the YZS, implying delamination of the mantle lithosphere from the Indian crust. This helium-isotopic boundary helps resolve multiple, mutually conflicting seismological interpretations. Our synthesis of the combined data locates the northern limit of Indian underplating beneath Tibet, where the Indian plate bends to steeper dips or breaks off beneath a (likely thin) asthenospheric wedge below Tibetan crust, thereby defining limited underthrusting for the Tibetan continental collision.

3.
Anal Chem ; 96(14): 5471-5477, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551977

RESUMEN

Current research endeavors have focused on the combination of various isothermal nucleic acid amplification methods with CRISPR/Cas systems, aiming to establish a more sensitive and reliable molecular diagnostic approach. Nevertheless, most assays adopt a two-step procedure, complicating manual operations and heightening the risk of contamination. Efforts to amalgamate both assays into a single-step procedure have faced challenges due to their inherent incompatibility. Furthermore, the presence of the protospacer adjacent motif (PAM) motif (e.g., TTN or TTTN) in the target double-strand DNA (dsDNA) is an essential prerequisite for the activation of the Cas12-based method. This requirement imposes constraints on crRNA selection. To overcome such limitations, we have developed a novel PAM-free one-step asymmetric recombinase polymerase amplification (RPA) coupled with a CRISPR/Cas12b assay (OAR-CRISPR). This method innovatively merges asymmetric RPA, generating single-stranded DNA (ssDNA) amenable to CRISPR RNA binding without the limitations of the PAM site. Importantly, the single-strand cleavage by PAM-free crRNA does not interfere with the RPA amplification process, significantly reducing the overall detection times. The OAR-CRISPR assay demonstrates sensitivity comparable to that of qPCR but achieves results in a quarter of the time required by the latter method. Additionally, our OAR-CRISPR assay allows the naked-eye detection of as few as 60 copies/µL DNA within 8 min. This innovation marks the first integration of an asymmetric RPA into one-step CRISPR-based assays. These advancements not only support the progression of one-step CRISPR/Cas12-based detection but also open new avenues for the development of detection methods capable of targeting a wide range of DNA targets.


Asunto(s)
Sistemas CRISPR-Cas , Recombinasas , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Nucleotidiltransferasas , ADN/genética , ADN de Cadena Simple , ADN Complementario , Técnicas de Amplificación de Ácido Nucleico
4.
Chembiochem ; : e202400257, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847484

RESUMEN

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.

5.
Langmuir ; 40(6): 3222-3230, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38287218

RESUMEN

UiO-66-type metal-organic frameworks have been considered as promising adsorbents for capturing Ag(I) from wastewater. However, uncertainties persist regarding the specific absorptivity of individual functional groups to the UiO-66 framework structure. In this study, UiO-66-type metal-organic frameworks (UiO-66-X), featuring diverse functional groups (X = -(OH)2, -(COOH)2, -NO2, -NH2, -SO3H, -(SH)2), were synthesized in situ for Ag(I) capture. The findings revealed that functionalization significantly enhanced the adsorption capacity of Ag(I). Notably, quantitative analysis showed that 1 mol of -SH functional group onto the UiO-66 framework structure can adsorb 0.73 mol of Ag(I) ions, surpassing those of -COOH, -OH, -NH2, -SO3H, and -NO2 by 2.4-, 3.5-, 3.8-, 9.1-, and 24.3-fold, respectively. This represents the first assessment of the adsorption capacity of functionalized UiO-66 for Ag(I) based on each effective functional group, addressing limitations in traditional unit mass calculations. Further, the adsorption mechanism of UiO-66-X for selectively capturing Ag(I) was elucidated through experimental and theoretical analyses. Additionally, selectivity and practical applications confirm that UiO-66-(SH)2 exhibits strong anti-interference ability, whether in natural water bodies with complex compositions or in industrial wastewater under harsh conditions. We anticipate that this study will enhance our understanding of structure-performance dependencies of multivariate MOFs for designing novel adsorbents for Ag(I) capture.

6.
Inorg Chem ; 63(7): 3317-3326, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38329889

RESUMEN

A new 3D zinc-based metal-organic framework {[Zn7L2(DMF)3(H2O)(OH)2]·5DMF}n (1) (H6L = 5,5',5″-(methylsilanetriyl) triisophthalic acid) was constructed with an organosilicon-based linker, where H6L is a tetrahedral structure furnished with rich -COO- chelating sites for Zn(II) immobilization. Compound 1 exhibited two types of irregular one-dimensional channels and a three-dimensional skeleton with large specific surface area, making it a promising catalytic platform. Moreover, by incorporation of the second metal ion into the inorganic node of framework 1, isomorphic bimetallic MOF ZnMg-1 was successfully synthesized. ZnMg-1 demonstrated enhanced catalytic activity compared to 1 under identical conditions. Contrast experiments and theoretical calculations indicate that bimetallic active sites play a facilitating role in the chemical fixation of epoxides and CO2. It indicated that efficient chemical fixation of CO2 to cyclic carbonates was obtained over isomorphic MOF catalysts 1 and ZnMg-1.

7.
Environ Res ; 243: 117828, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38048866

RESUMEN

The magnetic CuFe2O4/MnO2 heterojunctions were prepared by hydrothermal method, and the effect of different reaction temperature on the physicochemical properties and catalytic activity was investigated. The CuFe2O4/MnO2 heterojunctions prepared at 100 °C can effectively activate peroxymonosulfate (PMS) at multiple application scenarios for degradation and mineralization of tetracycline, o-nitrophenol and ceftriaxone sodium under indoor light, visible light and dark condition. Additionally, the CuFe2O4/MnO2-PMS system showed high catalytic activity and anti-interference ability for degradation of pharmaceutical pollutants in natural water bodies and industrial wastewater. The TC removal efficiency in Qianhu Lake water, Ganjiang River water and tap water was about 88%, 92% and 89%, respectively. The CuFe2O4/MnO2-PMS system is also effective for actual pharmaceutical wastewater treatment with 77.9% of COD removal efficiency. Interestingly, the reactive species of CuFe2O4/MnO2-PMS system under visible light are different from those in dark condition, and the different catalytic mechanisms at multiple application scenarios were proposed. This work provides new insights into mechanism exploration of heterojunction catalyst for PMS activation.


Asunto(s)
Compuestos de Manganeso , Óxidos , Peróxidos , Agua , Preparaciones Farmacéuticas
8.
Environ Res ; 251(Pt 2): 118688, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493855

RESUMEN

The widespread usage of quaternary ammonium compounds (QACs) as disinfectants during the COVID-19 pandemic poses significant environmental risks, such as toxicity to organisms and the emergence of superbugs. In this study, different inorganic salts (NaCl, KCl, CaCl2, MgCl2) were used to induce endophytes LSE01 isolated from hyperaccumulating plants. After five generations of cultivation under 80 g/L NaCl, the minimum inhibitory concentration (MIC) of LSE01 to QACs increased by about 3-fold, while its degradation extent increased from 8% to 84% for C12BDMA-Cl and 5%-89% for C14BDMA-Cl. Transmission electron microscopy (TEM) and three-dimensional fluorescence spectra indicated that the cells induced by high concentration of salt caused plasmolysis and secreted more bound extracellular polymeric substances (B-EPS); these changes are likely to be an important reason for the observed increased resistance and enhanced degradation extent of LSE01 to QACs. Our findings suggest that salt-induction could be an effective way to enhance the resistance and removal of toxic organic pollutants by functional microorganisms.


Asunto(s)
Endófitos , Compuestos de Amonio Cuaternario , Salinidad , Compuestos de Amonio Cuaternario/farmacología , Pruebas de Sensibilidad Microbiana , Bacterias/efectos de los fármacos , Biodegradación Ambiental
9.
Bioessays ; 44(6): e2100256, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35355301

RESUMEN

Kawasaki disease (KD) is an acute self-limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high-throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to involved in KD. However, the role of ncRNAs in KD has not been comprehensively elucidated. Therefore, it is significative to study the regulatory role of ncRNA in KD, which might help to uncover new and effective therapeutic strategies for KD. In this review, we summarize recent studies on ncRNA in KD from the perspectives of immune disorders, inflammatory disorders, and endothelial dysfunction, and highlight the potential of ncRNAs as therapeutic targets for KD.


Asunto(s)
MicroARNs , Síndrome Mucocutáneo Linfonodular , ARN Largo no Codificante , Niño , Humanos , MicroARNs/genética , Síndrome Mucocutáneo Linfonodular/genética , ARN Circular , ARN Largo no Codificante/genética , ARN no Traducido/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-38401071

RESUMEN

Background: One of the most prevalent disorders of the shoulder is rotator cuff tendinosis, which is a major contributor to shoulder discomfort and shoulder joint dysfunction. Rotator cuff tendinosis occurs in 0.3% to 5.5% of people worldwide and is diagnosed in 0.5% to 7.4% of people in China annually. We performed a meta-analysis to assess whether hypertonic dextrose proliferation therapy, a form of prolotherapy, improves the well-being of patients with rotator cuff injuries. Methods: We screened the literature by searching the PubMed, Embase, Cochrane Library, and Web of Science databases for the search terms prolotherapy, hypertonic dextrose, and rotator cuff. We identified and evaluated studies that treated individuals with rotator cuff lesions with hypertonic dextrose proliferation therapy (intervention) or a placebo (control). The outcome measures for patients with rotator cuff lesions were the visual analog scale score, the shoulder pain and disability index, and other metrics. These metrics were used to evaluate the effects of hypertonic dextrose proliferation therapy on individuals with rotator cuff diseases by meta-analysis. Results: The meta-analysis used data from 6 studies. In the 6 studies, the visual analog scale scores improved in the intervention and control categories, with greater improvement for the intervention category compared with the control category (standardized mean difference [SMD], 1.10 [95% CI, 0.37-1.83]; P = .04). In the studies that measured other outcomes, greater improvement for the intervention category compared with the control category was seen for the shoulder pain and disability index score (SMD, 8.13 [95% CI, 5.34-10.91]; P < .01), flexion (SMD, 5.73 [95% CI, 0.99-10.47]; P < .01), and abduction (SMD, 6.49 [95% CI, 0.66-12.31]; P < .05). There were no statistically significant differences of internal rotation between the intervention and control categories (SMD, -1.74 [95% CI, -4.25 to 0.78]; P = .18) and external rotation (SMD, 2.78 [95% CI, -0.13 to 5.69]; P = .06). Conclusion: The findings of this study suggest that individuals with rotator cuff injuries may benefit from hypertonic dextrose proliferation therapy based on the visual analog scale score, the shoulder pain and disability index score, flexion, and abduction. These results must, nevertheless, be supported by high-caliber follow-up research.

11.
Ecotoxicol Environ Saf ; 274: 116132, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471342

RESUMEN

The recycling of industrial solid by-products such as red mud (RM) has become an urgent priority, due to their large quantities and lack of reutilization methods can lead to resource wastage. In this work, RM was employed to fabricate green hydrochar (HC) to prepare zero-valent iron (ZVI) modified carbonous materials, and conventional iron salts (IS, FeCl3) was applied as comparison, fabricated HC labeled as RM/HC and IS/HC, respectively. The physicochemical properties of these HC were comprehensively characterized. Further, hexavalent chromium (Cr(VI)) removal performance was assessed (375.66 and 337.19 mg/g for RM/HC and IS/HC, respectively). The influence of dosage and initial pH were evaluated, while isotherms, kinetics, and thermodynamics analysis were also conducted, to mimic the surface interactions. The stability and recyclability of adsorbents also verified, while the practical feasibility was assessed by bok choy-planting experiment. This work revealed that RM can be used as a high value and green fabricant for HC the effective removal of chromium contaminants from the wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Hierro/química , Contaminantes Químicos del Agua/análisis , Cromo/análisis , Carbono , Adsorción
12.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1073-1081, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621914

RESUMEN

The present study aimed to investigate the effect and mechanism of Bupleuri Radix-Paeoniae Radix Alba medicated plasma on HepG2 hepatoma cells by regulating the microRNA-1297(miR-1297)/phosphatase and tensin homologue deleted on chromosome 10(PTEN) signaling axis. Real-time quantitative PCR(RT-qPCR) was carried out to determine the mRNA levels of miR-1297 and PTEN in different hepatoma cell lines. The dual luciferase reporter assay was employed to verify the targeted interaction between miR-1297 and PTEN. The cell counting kit-8(CCK-8) was used to detect cell proliferation, and the optimal concentration and intervention time of the medicated plasma were determined. The cell invasion and migration were examined by Transwell assay and wound healing assay. Cell cycle distribution was detected by PI staining, and the apoptosis of cells was detected by Annexin V-FITC/PI double staining. The mRNA levels of miR-1297, PTEN, protein kinase B(Akt), and phosphatidylinositol 3-kinase(PI3K) were determined by RT-qPCR. Western blot was employed to determine the protein levels of PTEN, Akt, p-Akt, caspase-3, caspase-9, B-cell lymphoma-2(Bcl-2), and Bcl-2-associated X protein(Bax). The results showed that HepG2 cells were the best cell line for subsequent experiments. The dual luciferase reporter assay confirmed that miR-1297 could bind to the 3'-untranslated region(3'UTR) in the mRNA of PTEN. The medicated plasma inhibited the proliferation of HepG2 cells, and the optimal intervention concentration and time were 20% and 72 h. Compared with the blank plasma, the Bupleuri Radix-Paeoniae Radix Alba medicated plasma, miR-1297 inhibitor, miR-1297 inhibitor + medicated plasma all inhibited the proliferation, invasion, and migration of HepG2 cells, increased the proportion of cells in the G_0/G_1 phase, decreased the proportion of cells in the S phase, and increased the apoptosis rate. The medicated plasma down-regulated the mRNA levels of miR-1297, PI3K, and Akt and up-regulated the mRNA level of PTEN. In addition, it up-regulated the protein levels of PTEN, Bax, caspase-3, and caspsae-9 and down-regulated the protein levels of p-Akt, p-PI3K, and Bcl-2. In conclusion, Bupleuri Radix-Paeoniae Radix Alba medicated plasma can inhibit the expression of miR-1297 in HepG2 hepatoma cells, promote the expression of PTEN, and negatively regulate PI3K/Akt signaling pathway, thereby inhibiting the proliferation and inducing the apoptosis of HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , MicroARNs , Paeonia , Extractos Vegetales , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Hep G2 , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2 , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Apoptosis , Proliferación Celular , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Mensajero , Luciferasas/metabolismo , Luciferasas/farmacología , Línea Celular Tumoral
13.
Angew Chem Int Ed Engl ; : e202407109, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702296

RESUMEN

Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.

14.
BMC Bioinformatics ; 24(1): 222, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259059

RESUMEN

OBJECTIVE: To explore dermatomyositis signature genes as potential biomarkers of hepatocellular carcinoma and their associated molecular regulatory mechanisms. METHODS: Based on the mRNA-Seq data of dermatomyositis and hepatocellular carcinoma in public databases, five dermatomyositis signature genes were screened by LASSO regression analysis and support vector machine (SVM) algorithm, and their biological functions in dermatomyositis with hepatocellular carcinoma were investigated, and a nomogram risk prediction model for hepatocellular carcinoma was constructed and its predictive efficiency was initially evaluated. The immune profile in hepatocellular carcinoma was examined based on the CIBERSORT and ssGSEA algorithms, and the correlation between five dermatomyositis signature genes and tumor immune cell infiltration and immune checkpoints in hepatocellular carcinoma was investigated. RESULTS: The expression levels of five dermatomyositis signature genes were significantly altered in hepatocellular carcinoma and showed good diagnostic efficacy for hepatocellular carcinoma, suggesting that they may be potential predictive targets for hepatocellular carcinoma, and the risk prediction model based on five dermatomyositis signature genes showed good risk prediction efficacy for hepatocellular carcinoma and has good potential for clinical application. In addition, we also found that the upregulation of SPP1 expression may activate the PI3K/ART signaling pathway through integrin-mediated activation, which in turn regulates the development and progression of hepatocellular carcinoma. CONCLUSION: LY6E, IFITM1, GADD45A, MT1M, and SPP1 are potential predictive targets for new-onset hepatocellular carcinoma in patients with dermatomyositis, and the upregulation of SPP1 expression may activate the PI3K/ART signaling pathway through the mediation of integrins to promote the development and progression of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Dermatomiositis , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Dermatomiositis/complicaciones , Dermatomiositis/genética , Neoplasias Hepáticas/genética , Algoritmos , Fosfatidilinositol 3-Quinasas
15.
J Biol Chem ; 298(12): 102605, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36257404

RESUMEN

Podocyte injury is a characteristic pathological hallmark of diabetic nephropathy (DN). However, the exact mechanism of podocyte injury in DN is incompletely understood. This study was conducted using db/db mice and immortalized mouse podocytes. High-throughput sequencing was used to identify the differentially expressed long noncoding RNAs in kidney of db/db mice. The lentiviral shRNA directed against long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) or microRNA-26a-5p (miR-26a-5p) agomir was used to treat db/db mice to regulate the SNHG5/miR-26a-5p pathway. Here, we found that the expression of transient receptor potential canonical type 6 (TRPC6) was significantly increased in injured podocytes under the condition of DN, which was associated with markedly decreased miR-26a-5p. We determined that miR-26a-5p overexpression ameliorated podocyte injury in DN via binding to 3'-UTR of Trpc6, as evidenced by the markedly reduced activity of luciferase reporters by miR-26a-5p mimic. Then, the upregulated SNHG5 in podocytes and kidney in DN was identified, and it was proved to sponge to miR-26a-5p directly using luciferase activity, RNA immunoprecipitation, and RNA pull-down assay. Knockdown of SNHG5 attenuated podocyte injury in vitro, accompanied by an increased expression of miR-26a-5p and decreased expression of TRPC6, demonstrating that SNHG5 promoted podocyte injury by controlling the miR-26a-5p/TRPC6 pathway. Moreover, knockdown of SNHG5 protects against podocyte injury and progression of DN in vivo. In conclusion, SNHG5 promotes podocyte injury via the miR-26a-5p/TRPC6 pathway in DN. Our findings provide novel insights into the pathophysiology of podocyte injury and a potential new therapeutic strategy for DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , MicroARNs , Podocitos , ARN Largo no Codificante , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Nefropatías Diabéticas/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Podocitos/metabolismo , Apoptosis/genética , Diabetes Mellitus/metabolismo
16.
J Am Chem Soc ; 145(9): 5092-5104, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36821097

RESUMEN

Cell surface engineering provides access to custom-made cell interfaces with desirable properties and functions. However, cell-selective covalent labeling methods that can simultaneously install multiple molecules with different functions are scarce. Herein, we report an aptamer-enabled proximity catalytic covalent labeling platform for multifunctional surface reconfiguration of target cells in mixed cell populations. By conjugating peroxidase with cell-selective aptamers, the probes formed can selectively bind target cells and catalyze target-cell-localized covalent labeling in situ. The universal applicability of the platform to different phenol-modified functional molecules allows us to perform a variety of manipulations on target cells, including labeling, tracking, assembly regulation, and surface remodeling. In particular, the platform has the ability of multiplexed covalent labeling, which can be used to install two mutually orthogonal click reactive molecules simultaneously on the surface of target cells. We thus achieve "multitasking" in complex multicellular systems: programming and tracking specific cell-cell interactions. We further extend the functional molecules to carbohydrates and perform ultrafast neoglycosylation on target living cells. These newly introduced sugars on the cell membrane can be recognized and remodeled by a glycan-modifying enzyme, thus providing a method package for cell-selective engineering of the glycocalyx.


Asunto(s)
Aptámeros de Nucleótidos , Membrana Celular/metabolismo , Catálisis , Aptámeros de Nucleótidos/metabolismo
17.
J Am Chem Soc ; 145(43): 23670-23680, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857274

RESUMEN

Executing glycan editing at a molecular level not only is pivotal for the elucidation of complicated mechanisms involved in glycan-relevant biological processes but also provides a promising solution to potentiate disease therapy. However, the precision control of glycan modification or glyco-editing on a selected glycoprotein is by far a grand challenge. Of note is to preserve the intact cellular glycan landscape, which is preserved after editing events are completed. We report herein a versatile, traceless glycan modification methodology for customizing the glycoforms of targeted proteins (subtypes), by orchestrating chemical- and photoregulation in a protein-selective glycoenzymatic system. This method relies on a three-module, ligand-photocleavable linker-glycoenzyme (L-P-G) conjugate. We demonstrated that RGD- or synthetic carbohydrate ligand-containing conjugates (RPG and SPG) would not activate until after the ligand-receptor interaction is accomplished (chemical regulation). RPG and SPG can both release the glycoenzyme upon photoillumination (photoregulation). The adjustable glycoenzyme activity, combined with ligand recognition selectivity, minimizes unnecessary glycan editing perturbation, and photolytic cleavage enables precise temporal control of editing events. An altered target protein turnover and dimerization were observed in our system, emphasizing the significance of preserving the native physiological niche of a particular protein when precise modification on the carbohydrate epitope occurs.


Asunto(s)
Carbohidratos , Polisacáridos , Ligandos , Polisacáridos/química , Glicoproteínas/química
18.
Gastroenterology ; 163(2): 411-425.e4, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35487288

RESUMEN

BACKGROUND & AIMS: A subset of myeloid-derived suppressor cells (MDSCs) that express murine Schlafen4 (SLFN4) or its human ortholog SLFN12L polarize in the Helicobacter-inflamed stomach coincident with intestinal or spasmolytic polypeptide-expressing metaplasia. We propose that individuals with a more robust response to damage-activated molecular patterns and increased Toll-like receptor 9 (TLR9) expression are predisposed to the neoplastic complications of Helicobacter infection. METHODS: A mouse or human Transwell co-culture system composed of dendritic cells (DCs), 2-dimensional gastric epithelial monolayers, and Helicobacter were used to dissect the cellular source of interferon-α (IFNα) in the stomach by flow cytometry. Conditioned media from the co-cultures polarized primary myeloid cells. MDSC activity was determined by T-cell suppression assays. In human subjects with intestinal metaplasia or gastric cancer, the rs5743836 TLR9T>C variant was genotyped and linked to TLR9, IFNα, and SLFN12L expression by immunohistochemistry. Nuclear factor-κB binding to the TLR9 C allele was determined by electrophoretic mobility shift assays. RESULTS: Helicobacter infection induced gastric epithelial and plasmacytoid DC expression of TLR9 and IFNα. Co-culturing primary mouse or human cells with DCs and Helicobacter induced TLR9, IFNα secretion, and SLFN+-MDSC polarization. Neutralizing IFNα in vivo mitigated Helicobacter-induced spasmolytic polypeptide-expressing metaplasia. The TLR9 minor C allele creates a nuclear factor-κB binding site associated with higher levels of TLR9, IFNα, and SLFN12L in Helicobacter-infected stomachs that correlated with a greater incidence of metaplasias and cancer. CONCLUSIONS: TLR9 plays an essential role in the production of IFNα and polarization of SLFN+ MDSCs on Helicobacter infection. Subjects carrying the rs5743836 TLR9 minor C allele are predisposed to neoplastic complications if chronically infected.


Asunto(s)
Infecciones por Helicobacter , Células Supresoras de Origen Mieloide , Neoplasias Gástricas , Receptor Toll-Like 9 , Animales , Helicobacter , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Humanos , Interferón-alfa , Metaplasia , Ratones , FN-kappa B/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiología , Receptor Toll-Like 4 , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
19.
Anal Chem ; 95(48): 17798-17807, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37976298

RESUMEN

The difficulty in elucidating the microenvironment of extracellular H2O2 efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for H2O2 efflux. The release of endogenous H2O2 is used as a "physiological switch" for HRP to enable proximity labeling. Using this platform, we visualize the oxidative stress state of tumor cells under the condition of nutrient withdrawal, as well as that of macrophages exposed to nonparticulate stimuli. Furthermore, in combination with a proteomics technique, we identify candidate proteins at the invasion interface between fungal mimics (zymosan) and macrophages by interception labeling of locally accumulated H2O2 and confirm that Toll-like receptor 2 binds zymosan in a glycan-dependent manner. The IPL platform has great potential to elucidate the mechanisms underlying biological processes involving redox pathways.


Asunto(s)
Peróxido de Hidrógeno , Transducción de Señal , Peróxido de Hidrógeno/metabolismo , Zimosan , Peroxidasa de Rábano Silvestre/metabolismo , Oxidación-Reducción
20.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32591784

RESUMEN

Whole-exome sequencing (WES) has been widely used to study the role of protein-coding variants in genetic diseases. Non-coding regions, typically covered by sparse off-target data, are often discarded by conventional WES analyses. Here, we develop a genotype calling pipeline named WEScall to analyse both target and off-target data. We leverage linkage disequilibrium shared within study samples and from an external reference panel to improve genotyping accuracy. In an application to WES of 2527 Chinese and Malays, WEScall can reduce the genotype discordance rate from 0.26% (SE= 6.4 × 10-6) to 0.08% (SE = 3.6 × 10-6) across 1.1 million single nucleotide polymorphisms (SNPs) in the deeply sequenced target regions. Furthermore, we obtain genotypes at 0.70% (SE = 3.0 × 10-6) discordance rate across 5.2 million off-target SNPs, which had ~1.2× mean sequencing depth. Using this dataset, we perform genome-wide association studies of 10 metabolic traits. Despite of our small sample size, we identify 10 loci at genome-wide significance (P < 5 × 10-8), including eight well-established loci. The two novel loci, both associated with glycated haemoglobin levels, are GPATCH8-SLC4A1 (rs369762319, P = 2.56 × 10-12) and ROR2 (rs1201042, P = 3.24 × 10-8). Finally, using summary statistics from UK Biobank and Biobank Japan, we show that polygenic risk prediction can be significantly improved for six out of nine traits by incorporating off-target data (P < 0.01). These results demonstrate WEScall as a useful tool to facilitate WES studies with decent amounts of off-target data.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad , Genotipo , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Desequilibrio de Ligamiento , Proteínas Musculares/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA