Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37562403

RESUMEN

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Asunto(s)
Briófitas , Cambio Climático , Ecosistema , Aclimatación , Adaptación Fisiológica , Tibet , Briófitas/fisiología
2.
Pharmacol Res ; 208: 107392, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39233057

RESUMEN

AIMS: Diabetic nephropathy (DN) is a major complication of diabetes mellitus (DM) without curative interventions currently. Huperzine A (Hup A), a natural alkaloid, has demonstrated significant hypoglycemic and anti-inflammatory effects. We aim to investigate the protective effects of Hup A on DN and explore the underlying mechanisms METHODS: We applied STZ induced diabetic rats as DN model and leveraged combination analysis of the transcriptome, metabolome, microbiome, and network pharmacology (NP). The total effect of Hup A on DN was detected (i.e. urine protein, renal tissue structure) and the differential genes were further verified at the level of diabetic patients, db/db mice and cells. Clinical data and small interfering RNA (siRNA)-Apoe were adopted. RESULTS: Hup A alleviated kidney injury in DN rats. Transcriptomics data and Western blot indicated that the improvement in DN was primarily associated with Apoe and Apoc2. Additionally, metabolomics data demonstrated that DN-induced lipid metabolism disruption was regulated by Hup A, potentially involving sphingosine. Hup A also enriched microbial diversity and ameliorated DN-induced microbiota imbalance. Spearman's correlation analysis demonstrated significant associations among the transcriptome, metabolome, and microbiome. Apoe level was positively correlated with clinical biomarkers in DN patients. Si-Apoe also played protective role in podocytes. NP analysis also suggested that Hup A may treat DN by modulating lipid metabolism, microbial homeostasis, and apoptosis, further validating our findings. CONCLUSIONS: Collectively, we provide the first evidence of the therapeutic effect of Hup A on DN, indicating that Hup A is a potential drug for the prevention and treatment of DN.


Asunto(s)
Alcaloides , Apolipoproteínas E , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas Sprague-Dawley , Sesquiterpenos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Animales , Alcaloides/farmacología , Alcaloides/uso terapéutico , Masculino , Humanos , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Apolipoproteínas E/genética , Ratas , Ratones , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Transcriptoma/efectos de los fármacos , Ratones Endogámicos C57BL , Farmacología en Red , Metabolómica , Persona de Mediana Edad , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Femenino
3.
Sleep Breath ; 28(2): 823-833, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38147288

RESUMEN

PURPOSE: Circadian disruption has been a common issue due to modern lifestyles. Ventricular remodeling (VR) is a pivotal progressive pathologic change after acute myocardial infarction (AMI) and circadian disruption may have a negative influence on VR according to the latest research. Whether or not Guanxin V (GXV) has a positive effect on VR after AMI with circadian disruption drew our interest. METHODS: Rats were randomly divided into a sham group, an AMI group, an AMI with circadian disruption group, and an AMI with circadian disruption treated with the GXV group according to a random number table. RNA sequencing (RNA-Seq) was utilized to confirm the different expressed genes regulated by circadian disruption. Cardiac function, inflammation factors, pathological evaluation, and mitochondrial dynamics after the intervention were conducted to reveal the mechanism by which GXV regulated VR after AMI with circadian disruption. RESULTS: RNA-Seq demonstrated that NF-κB was up-regulated by circadian disruption in rats with AMI. Functional and pathological evaluation indicated that compared with the AMI group, circadian disruption was associcataed with deteriorated cardiac function, expanded infarcted size, and exacerbated fibrosis and cardiomyocyte apoptosis. Further investigation demonstrated that mitochondrial dynamics imbalance was induced by circadian disruption. GXV intervention reversed the inflammatory status including down-regulation of NF-κB. Reserved cardiac function, limited infarct size, and ameliorated fibrosis and apoptosis were also observed in the GXV treated group. GXV maintained mitochondrial fission/fusion imbalance through suppressed expression of mitochondrial fission-associated proteins. CONCLUSION: The study findings suggest that identified mitochondrial dysfunctions may underlie the link between circadian disruption and VR. GXV may exert cardioprotection after AMI with circadian disruption through regulating mitochondrial dynamics.


Asunto(s)
Dinámicas Mitocondriales , Infarto del Miocardio , Remodelación Ventricular , Animales , Infarto del Miocardio/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología , Ratas , Dinámicas Mitocondriales/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/farmacología , Trastornos Cronobiológicos/tratamiento farmacológico , Trastornos Cronobiológicos/fisiopatología , Trastornos Cronobiológicos/genética , Modelos Animales de Enfermedad
4.
BMC Gastroenterol ; 22(1): 24, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039003

RESUMEN

BACKGROUND: Intestinal epithelial cells form a physical barrier that protects the intestine against the intestinal microbiota through tight junctions (TJs) and adhesive junctions, while barrier disruption may lead to inflammatory bowel disease (IBD). Claudin-7 (Cldn7) has been implicated in this protection as an important member of TJs. Here, we experimentally study the effect of Cldn7 deletion on intestinal microbiota in colitis. METHODS: Colitis model was established based on inducible intestinal conditional Cldn7 gene knockout mice (Cldn7fl/fl; villin-CreERT2), by feeding with dextran sodium sulfate (DSS). AB-PAS staining and immunohistochemical staining of Muc2 mucin were used to detect the effect of Cldn7 deficiency on the mucus layer of mice with colitis, and fluorescence in situ hybridization was used to detect how Cldn7 promotes spatial separation of the gut microbiota from the host. The microbiota population was characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples. RESULTS: Compared with the controls, Cldn7 knockout increased susceptibility to colitis, including greater degree of weight loss, colon shortening, and a significantly higher disease activity index score. DSS-treated Cldn7 knockout mice promoted the migration of bacteria to the intestinal epithelium to some extent by damaging the intestinal mucus layer. Sequencing of 16S rRNA showed that DSS-treated Cldn7 knockout mice reduced the gut microbiota diversity and had greater relative abundance of Escherichia coli. LEfSe analysis indicated that Escherichia coli may be the key bacteria in Cldn7 knockout mice during DSS-induced colitis. Furthermore, the Tax4Fun analysis predicted that DSS-treated Cldn7 knockout mice enriched for microbiota impacting infectious diseases, immune system and metabolic functions. CONCLUSIONS: Our data suggests an association between intestinal Cldn7 knockout and microbiota dysbiosis during inflammatory events.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Claudinas/genética , Colitis/inducido químicamente , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Hibridación Fluorescente in Situ , Mucosa Intestinal , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Ribosómico 16S/genética
5.
J Transl Med ; 19(1): 311, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281572

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a common malignant tumour of the digestive tract that is characterized by high patient morbidity and mortality rates. Claudin-7 (Cldn7), a tight junction protein, was recently reported to function as a candidate tumour suppressor gene in CRC. Our previous study demonstrated that the large intestine of C57/BL6 mice showed intestinal adenomas and abnormal Ki67 expression and distribution in the intestinal crypt when Cldn7 was knocked out. The aim of this study was to further investigate whether Cldn7 deficiency has non-tight junction functions, affects intestinal stemness properties, promotes CRC and to determine the specific mechanism. METHODS: Cell proliferation assays, migration assays, apoptosis assays, tumour sphere formation assays in vitro, and subcutaneous xenograft models in vivo were used to determine the effects of Cldn7 knockdown on the biological characteristics of CRC stem cells. Western blotting, qPCR and immunofluorescence staining were performed to identify the epithelial-mesenchymal transition and the activation of Wnt/ß-catenin pathway in CRC stem cells. Cldn7 inducible conditional gene knockout mice and immunohistochemical staining further verified this hypothesis in vivo. The mechanism and target of Cldn7 were determined by performing a chromatin immunoprecipitation (ChIP) assay and coimmunoprecipitation (CoIP) assay. RESULTS: Cldn7 knock down in CRC stem cells promoted cell proliferation, migration, and globular growth in serum-free medium and the ability to form xenograft tumours; cell apoptosis was inhibited, while the cellular epithelial-mesenchymal transition was also observed. These changes in cell characteristics were achieved by activating the Wnt/ß-catenin pathway and promoting the expression of downstream target genes after ß-catenin entry into the nucleus, as observed in CRC cell lines and Cldn7 gene knockout mouse experiments. Using ChIP and CoIP experiments, we initially found that Cldn7 and Sox9 interacted at the protein level to activate the Wnt/ß-catenin pathway. CONCLUSIONS: Based on our research, Cldn7 deficiency confers stemness properties in CRC through Sox9-mediated Wnt/ß-catenin signalling. This result clarifies that Cldn7 plays an inhibitory role in CRC and reveals a possible molecular mechanism, which is conducive to further research on Cldn7 and cancer stem cells.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Claudinas/genética , Claudinas/metabolismo , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Factor de Transcripción SOX9 , Vía de Señalización Wnt , beta Catenina/metabolismo
6.
Biochem Biophys Res Commun ; 508(3): 797-804, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30528239

RESUMEN

The dysregulation of the tight junctions (TJs) protein claudin-7 is closely related to the development and metastasis of colorectal cancer (CRC). The aim of this study was to investigate the expression of claudin-7 and characterize the relationship between claudin-7 expression and epithelial-mesenchymal transition (EMT) in CRC. In this study, the expression of claudin-7, E-cadherin, vimentin and snail-1 was detected by immunohistochemistry (IHC) in a set of 80 CRC specimens comprising 20 specimens each of well-differentiated, moderately differentiated, poorly differentiated and liver metastases tissues. The correlation between claudin-7 and EMT-related proteins in the stably transfected claudin-7 knockdown HCT116 cell line was analyzed by IHC, immunofluorescence (IF), Western blotting (WB) and nude mouse xenograft models. The results revealed that the expression of claudin-7 was downregulated as CRC tissue differentiation grade decreased, and that low claudin-7 expression corresponded to the downregulation of E-cadherin (r = 0.725, p < 0.001) and upregulation of vimentin (r = -0.376, p = 0.001) and snail-1 (r = -0.599, p < 0.001). Additionally, in the claudin-7 knockdown HCT116 cell line, the staining intensity and expression of E-cadherin was decreased, while the immunoreactivity and expression of vimentin and snail-1 was increased. Futhermore, the result of tumor formation experiment was consistent with CRC tissues. In conclusion, the expression of claudin-7 in CRC is downregulated as differentiation grade decreases. Claudin-7 downregulation may promote the invasion and metastasis of CRC by regulating EMT. Our results provide new perspectives for a potential therapeutic target for CRC.


Asunto(s)
Claudinas/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Claudinas/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Factores de Transcripción de la Familia Snail/metabolismo , Vimentina/metabolismo
7.
Environ Microbiol ; 20(5): 1794-1814, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29614212

RESUMEN

The process of initiation of host invasion and survival of some foliar phytopathogenic fungi in the absence of external nutrients on host leaf surfaces remains obscure. Here, we demonstrate that gluconeogenesis plays an important role in the process and nutrient-starvation adaptation before the pathogen host invasion. Deletion of phosphoenolpyruvate carboxykinase gene BcPCK1 in gluconeogenesis in Botrytis cinerea, the causative agent of grey mould, resulted in the failure of the ΔBcpck1 mutant conidia to germinate on hard and hydrophobic surface and penetrate host cells in the absence of glucose, reduction in conidiation and slow conidium germination in a nutrient-rich medium. The wild-type and ΔBcpck1 conidia germinate similarly in the presence of glucose (higher concentration) as the sole carbon source. Conidial glucose-content should reach a threshold level to initiate germination and host penetration. Infection structure formation by the mutants displayed a glucose-dependent fashion, which corresponded to the mutant virulence reduction. Exogenous glucose or complementation of BcPCK1 completely rescued all the developmental and virulence defects of the mutants. Our findings demonstrate that BcPCK1 plays a crucial role in B. cinerea pathogenic growth and virulence, and provide new insights into gluconeogenesis mediating pathogenesis of plant fungal pathogens via initiation of conidial germination and host penetration.


Asunto(s)
Botrytis/metabolismo , Proteínas Fúngicas/metabolismo , Gluconeogénesis/fisiología , Botrytis/genética , Fragaria/microbiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Gluconeogénesis/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Esporas Fúngicas/metabolismo , Virulencia
8.
iScience ; 27(4): 109442, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38523786

RESUMEN

Automatically and accurately segmenting skin lesions can be challenging, due to factors such as low contrast and fuzzy boundaries. This paper proposes a hybrid encoder-decoder model (CTH-Net) based on convolutional neural network (CNN) and Transformer, capitalizing on the advantages of these approaches. We propose three modules for skin lesion segmentation and seamlessly connect them with carefully designed model architecture. Better segmentation performance is achieved by introducing SoftPool in the CNN branch and sandglass block in the bottleneck layer. Extensive experiments were conducted on four publicly accessible skin lesion datasets, ISIC 2016, ISIC 2017, ISIC 2018, and PH2 to confirm the efficacy and benefits of the proposed strategy. Experimental results show that the proposed CTH-Net provides better skin lesion segmentation performance in both quantitative and qualitative testing when compared with state-of-the-art approaches. We believe the CTH-Net design is inspiring and can be extended to other applications/frameworks.

9.
ACS Macro Lett ; : 1515-1520, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39454132

RESUMEN

Aramid fiber reinforced composites (AFRCs) have received increasing attention because of their excellent comprehensive performance including high mechanical strength, high modulus, and light weight. However, full recycling of AFs from ARCFs is difficult to achieve. Herein, fully recyclable ARCFs are fabricated using reversible cross-linked polyurea plastics (PUHA) as the matrix. PUHA plastics are fabricated by cross-linking linear polyurea using hemiaminal groups. By changing the main chain structures, two types of PUHA plastics are prepared with excellent mechanical performance, which is comparable to that of traditional engineering plastics. PUHA plastics can be reprocessed at least five times without losing their original mechanical properties because of the dynamic exchangeability of the hemiaminal groups. Meanwhile, PUHA plastics can be rapidly depolymerized into linear polyurea under acidic conditions. When PUHA plastics are used as a matrix to fabricate AFRCs, the AFRCs exhibit excellent mechanical strength. Moreover, due to the simple chemical recycling ability of PUHA plastics, AFRCs can be fully decomposed into intact AFs and linear polyurea with high purity. This work presents the use of reversible cross-linked polyurea plastics in the fabrication of fully recyclable AFRCs and provides the future direction of developing fully recyclable and high-performance fiber-reinforced composites.

10.
Heliyon ; 10(2): e24177, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293445

RESUMEN

Background: In recent years, baroreflex activation therapy (BAT) has been utilized to treat heart failure with reduced ejection fraction (HFrEF). However, the supporting literature on its efficacy and safety is still limited. This investigation elucidates the effects of BAT in HFrEF patients to provide a reference for future clinical applications. Methods: This investigation follows Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 guidelines. Relevant investigations on the use of BAT in HFrEF patients were searched and selected from 5 databases, including Web of Science, MEDLINE, PubMed, Embase, and Cochrane Library, from inception to December 2022. The methodological quality of eligible articles was assessed via the Cochrane risk of bias tool, and for meta-analysis, RevMan (5.3) was used. Results: Randomized controlled trials comprising 343 participants were selected for the meta-analysis, which revealed that in HFrEF patients, BAT enhanced the levels of LVEF (MD: 2.97, 95 % CI: 0.53 to 5.41), MLHFQ (MD: -14.81, 95 % CI: -19.57 to -10.06) and 6MWT (MD: 68.18, 95 % CI: 51.62 to 84.74), whereas reduced the levels of LVEDV (MD: -15.79, 95 % CI: -32.96 to 1.37) and DBP (MD: -2.43, 95 % CI: -4.18 to -0.68). Conclusion: It was concluded that BAT is an efficient treatment option for HFrEF patients. However, to validate this investigation, further randomized clinical trials with multiple centers and large sample sizes are needed.

11.
Phytomedicine ; 125: 155276, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295661

RESUMEN

BACKGROUND: Coronary microembolism (CME) is commonly seen in the peri-procedural period of Percutaneous Coronary Intervention (PCI), where local platelet activation and endothelial cell inflammation crosstalk may lead to micro thrombus erosion and rupture, with serious consequences. Qihuang Zhuyu Formula (QHZYF) is a Chinese herbal compound with high efficacy against coronary artery disease, but its antiplatelet mechanism is unclear. HYPOTHESIS/PURPOSE: This study aimed to elucidate the effects and mechanisms of QHZYF on sodium laurate-induced CME using network pharmacology and in vitro and in vivo experiments. METHODS: We employed high-performance liquid chromatography mass spectrometry to identify the main components of QHZYF. Network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways mediating the effects of QHZYF on platelet activation. Next, we pretreated a sodium laurate-induced minimally invasive CME rat model with QHZYF. In vivo experiments were performed to examine cardiac function in rats, to locate coronary arteries on heart sections to observe internal microthrombi, to extract rat Platelet-rich plasma (PRP) for adhesion assays and CD62p and PAC-1 (ITGB3/ITGA2B) flow assays, and to measure platelet-associated protein expression in PRP. In vitro clot retraction and Co-culture of HUVECs with PRP were performed and the gene pathway was validated through flow cytometry and immunofluorescence. RESULTS: Combining UPLC-Q-TOF/MS technology and database mining, 78 compounds were finally screened as the putative and representative compounds of QHZYF, with 75 crossover genes associated with CME. QHZYF prevents CME mainly by regulating key pathways of the inflammation and platelets, including Lipid and atherosclerosis, Fluid shear stress, platelet activation, and PI3K-Akt signaling pathways. Five molecules including Calyson, Oroxin A, Protosappanin A,Kaempferol and Geniposide were screened and subjected to molecular docking and SPR validation in combination with Lipinski rules (Rule of 5, Ro5). In vivo experiments showed that QHZYF not only improved myocardial injury but also inhibited formation of coronary microthrombi. QHZYF inhibited platelet activation by downregulating expression of CD62p receptor and platelet membrane protein αIIbß3 and reduced the release of von Willebrand Factor (vWF), Ca2+ particles and inflammatory factor IL-6. Further analysis revealed that QHZYF inhibited the activation of integrin αIIbß3, via modulating the PI3K/Akt pathways. In in vitro experiments, QHZYF independently inhibited platelet clot retraction. Upon LPS induction, the activation of platelet membrane protein ITGB3 was inhibited via the PI3K/Akt pathway, revealing an important mechanism for attenuating coronary microthrombosis. We performed mechanistic validation using PI3K inhibitor LY294002 and Akt inhibitor MK-2206 to show that QHZYF inhibited platelet membrane protein activation and inflammation to improved coronary microvessel embolism by regulating PI3K/Akt/αIIbß3 pathways, mainly by inhibiting PI3K and Akt phosphorylation. CONCLUSION: QHZYF interferes with coronary microthrombosis through inhibition of platelet adhesion, activation and inflammatory crosstalk, thus has potential in clinical anti-platelet applications. Calyson, Oroxin A, Protosappanin A, Kaempferol and Geniposide may be the major active ingredient groups of QHZYF that alleviate coronary microthrombosis.


Asunto(s)
Medicamentos Herbarios Chinos , Iridoides , Intervención Coronaria Percutánea , Fenoles , Trombosis , Ratas , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quempferoles/farmacología , Agregación Plaquetaria , Simulación del Acoplamiento Molecular , Activación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/tratamiento farmacológico , Inflamación , Medicamentos Herbarios Chinos/farmacología
12.
J Mol Neurosci ; 74(4): 94, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373898

RESUMEN

Neurofibromatosis type 1 (NF1) is a prevalent autosomal dominant disorder caused by mutations in the NF1 gene, leading to multisystem disorders. Given the critical role of cysteine residues in protein stability and function, we aimed to identify key NF1 mutations affecting cysteine residues that significantly contribute to neurofibromatosis pathology. To identify the most critical mutations in the NF1 gene that contribute to the pathology of neurofibromatosis, we employed a sophisticated computational pipeline specifically designed to detect significant mutations affecting the NF1 gene. Our approach involved an exhaustive search of databases such as the Human Gene Mutation Database (HGMD), UniProt, and ClinVar for information on missense mutations associated with NF1. Our search yielded a total of 204 unique cysteine missense mutations. We then employed in silico prediction tools, including PredictSNP, iStable, and Align GVGD, to assess the impact of these mutations. Among the mutations, C379R, R1000C, and C1016Y stood out due to their deleterious effects on the biophysical properties of the neurofibromin protein, significantly destabilizing its structure. These mutations were subjected to further phenotyping analysis using SNPeffect 4.0, which predicted disturbances in the protein's chaperone binding sites and overall structural stability. Furthermore, to directly visualize the impact of these mutations on protein structure, we utilized AlphaFold3 to simulate both the wild-type and mutant NF1 structures, revealing the significant effects of the R1000C mutation on the protein's conformation. In conclusion, the identification of these mutations can play a pivotal role in advancing the field of precision medicine and aid in the development of effective drugs for associated diseases.


Asunto(s)
Mutación Missense , Neurofibromina 1 , Neurofibromina 1/genética , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Humanos , Neurofibromatosis 1/genética , Estabilidad Proteica
13.
Front Neurol ; 14: 1199390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37654432

RESUMEN

Background: The management of middle cerebral artery (MCA) aneurysms remains a controversial topic, and MCA aneurysms have traditionally been treated primarily by surgical clipping. The Neuroform Atlas Stent™ (NAS, available from Stryker Neurovascular, Fremont, California) represents the latest generation of intracranial stents with improved stent delivery system capabilities. Objective: This study aims to investigate the safety, feasibility and efficacy exhibited by NAS in treating unruptured aneurysms at the MCA bifurcation. Methods: This was a two-center retrospective study involving 42 patients with unruptured wide-necked aneurysms (WNAs) of the MCA treated with the NAS from October 2020 to July 2022. Results: The stent was used to treat 42 cases of unruptured WNA at the MCA bifurcation. Endovascular treatment techniques had a 100% success rate. Immediate postoperative angiography found complete aneurysm occlusion in 34 patients (80.9%) (mRRC 1), neck remnant in 7 patients (16.7%) (mRRC 2), and residual aneurysm in 1 patient (2.4%) (mRRC 3). The thromboembolic complication rate was 2.4% (1/42). The follow-up period was 8.7 months on average (3-16 months). The last angiographic follow-up results revealed complete aneurysm occlusion in 39 patients (92.9%) (mRRC 1), neck remnant in 3 (7.1%) patients (mRRC 2), no aneurysm recanalization or recurrence, and no cases of stent intimal hyperplasia. During the latest clinical follow-up, all patients had an mRS score of 0. Conclusion: Our study demonstrates that the NAS can be applied to treat unruptured WNAs at the MCA bifurcation with favorable safety, feasibility, and efficacy.

14.
Kaohsiung J Med Sci ; 39(10): 1022-1029, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37578093

RESUMEN

Heart failure (HF) is a disease with high mortality and morbidity rate. Autophagy is critically implicated in HF progression. The current research was designed to investigate the function of Dioscin on oxidative stress, autophagy, and apoptosis in HF. In this study, doxorubicin (Dox) was employed to induce HF model and HL-1 cell damage model. Echocardiography implied that Dioscin could dramatically relieve heart function in vivo. Western blotting determined that Dioscin treatment reversed the promotive effect of autophagy caused by Dox through modulating levels of key autophagy-associated molecules, including Atg5 and Beclin1. Dioscin also impaired apoptosis by regulating apoptosis-related protein, including Bcl-2 and cleaved caspase-3 following Dox treatment in vivo and in vitro. Furthermore, the impacts of Dioscin were mediated by upregulation of PDK1-mediated Akt/mTOR signaling. The mTOR inhibitor (rapamycin) could counteract the therapeutic impact of Dioscin in vitro. Taken together, Dioscin could relieve cardiac function through blocking apoptosis and autophagy by activating the PDK1-elicited Akt/mTOR pathway.

15.
Front Cardiovasc Med ; 10: 1203168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547246

RESUMEN

Background: The pathogenesis of myocardial infarction complicating depression is still not fully understood. Bioinformatics is an effective method to study the shared pathogenesis of multiple diseases and has important application value in myocardial infarction complicating depression. Methods: The differentially expressed genes (DEGs) between control group and myocardial infarction group (M-DEGs), control group and depression group (D-DEGs) were identified in the training set. M-DEGs and D-DEGs were intersected to obtain DEGs shared by the two diseases (S-DEGs). The GO, KEGG, GSEA and correlation analysis were conducted to analyze the function of DEGs. The biological function differences of myocardial infarction and depression were analyzed by GSVA and immune cell infiltration analysis. Four machine learning methods, nomogram, ROC analysis, calibration curve and decision curve were conducted to identify hub S-DEGs and predict depression risk. The unsupervised cluster analysis was constructed to identify myocardial infarction molecular subtype clusters based on hub S-DEGs. Finally, the value of these genes was verified in the validation set, and blood samples were collected for RT-qPCR experiments to further verify the changes in expression levels of these genes in myocardial infarction and depression. Results: A total of 803 M-DEGs, 214 D-DEGs, 13 S-DEGs and 6 hub S-DEGs (CD24, CSTA, EXTL3, RPS7, SLC25A5 and ZMAT3) were obtained in the training set and they were all involved in immune inflammatory response. The GSVA and immune cell infiltration analysis results also suggested that immune inflammation may be the shared pathogenesis of myocardial infarction and depression. The diagnostic models based on 6 hub S-DEGs found that these genes showed satisfactory combined diagnostic performance for depression. Then, two molecular subtypes clusters of myocardial infarction were identified, many differences in immune inflammation related-biological functions were found between them, and the hub S-DEGs had satisfactory molecular subtypes identification performance. Finally, the analysis results of the validation set further confirmed the value of these hub genes, and the RT-qPCR results of blood samples further confirmed the expression levels of these hub genes in myocardial infarction and depression. Conclusion: Immune inflammation may be the shared pathogenesis of myocardial infarction and depression. Meanwhile, hub S-DEGs may be potential biomarkers for the diagnosis and molecular subtype identification of myocardial infarction and depression.

16.
Aging (Albany NY) ; 15(23): 14210-14241, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38085668

RESUMEN

Cuproptosis is a recently reported new mode of programmed cell death which might be a potential co-pathogenesis of three kinds of primary cardiomyopathy. However, no investigation has reported a clear relevance between primary cardiomyopathy and cuproptosis. In this study, the differential cuproptosis-related genes (CRGs) shared by three kinds of primary cardiomyopathy were identified in training sets. As a result, four CRGs shared by three kinds of primary cardiomyopathy were acquired and they were mainly related to biological processes such as cell death and immuno-inflammatory response through differential analysis, correlation analysis, GSEA, GSVA and immune cell infiltration analysis. Then, three key CRGs (K-CRGs) with high diagnostic value were identified by LASSO regression. The results of nomogram, machine learning, ROC analysis, calibration curve and decision curve indicated that the K-CRGs exhibited outstanding performance in the diagnosis of three kinds of primary cardiomyopathy. After that, in each disease, two molecular subtypes clusters were distinguished. There were many differences between different clusters in the biological processes associated with cell death and immunoinflammation and K-CRGs had excellent molecular subtype identification efficacy. Eventually, results from validation datasets and in vitro experiments verified the role of K-CRGs in diagnosis of primary cardiomyopathy, identification of primary cardiomyopathic molecular subtypes and pathogenesis of cuproptosis. In conclusion, this study found that cuproptosis might be the potential common pathogenesis of three kinds of primary cardiomyopathy and K-CRGs might be promising biomarkers for the diagnosis and molecular subtypes identification of primary cardiomyopathy.


Asunto(s)
Apoptosis , Cardiomiopatías , Humanos , Muerte Celular , Calibración , Biología Computacional , Cardiomiopatías/genética
17.
Digit Health ; 9: 20552076231207197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37846401

RESUMEN

Objective: To develop an explainable lightweight skin disease high-precision classification model that can be deployed to the mobile terminal. Methods: In this study, we present HI-MViT, a lightweight network for explainable skin disease classification based on Modified MobileViT. HI-MViT is mainly composed of ordinary convolution, Improved-MV2, MobileViT block, global pooling, and fully connected layers. Improved-MV2 uses the combination of shortcut and depth classifiable convolution to substantially decrease the amount of computation while ensuring the efficient implementation of information interaction and memory. The MobileViT block can efficiently encode local and global information. In addition, semantic feature dimensionality reduction visualization and class activation mapping visualization methods are used for HI-MViT to further understand the attention area of the model when learning skin lesion images. Results: The International Skin Imaging Collaboration has assembled and made available the ISIC series dataset. Experiments using the HI-MViT model on the ISIC-2018 dataset achieved scores of 0.931, 0.932, 0.961, and 0.977 on F1-Score, Accuracy, Average Precision (AP), and area under the curve (AUC). Compared with the top five algorithms of ISIC-2018 Task 3, Marco's average F1-Score, AP, and AUC have increased by 6.9%, 6.8%, and 0.8% compared with the suboptimal performance model. Compared with ConvNeXt, the most competitive convolutional neural network architecture, our model is 5.0%, 3.4%, 2.3%, and 2.2% higher in F1-Score, Accuracy, AP, and AUC, respectively. The experiments on the ISIC-2017 dataset also achieved excellent results, and all indicators were better than the top five algorithms of ISIC-2017 Task 3. Using the trained model to test on the PH2 dataset, an excellent performance score is obtained, which shows that it has good generalization performance. Conclusions: The skin disease classification model HI-MViT proposed in this article shows excellent classification performance and generalization performance in experiments. It demonstrates how the classification outcomes can be applied to dermatologists' computer-assisted diagnostics, enabling medical professionals to classify various dermoscopic images more rapidly and reliably.

18.
Heliyon ; 9(10): e21158, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37928399

RESUMEN

Background: At present, the pathogenesis of atherosclerosis has not been fully elucidated, and the diagnosis and treatment face great challenges. Cuproptosis is a novel cell death pattern that might be involved in the development of atherosclerosis. However, no research has reported the correlation between cuproptosis and atherosclerosis. Methods: The differential cuproptosis-related genes (CRGs) between atherosclerosis group and control group (A-CRGs) were discovered via differential expression analysis. The correlation analysis, PPI network analysis, GO, KEGG and GSEA analysis were performed to investigate the function of A-CRGs. The differences of biological function between atherosclerosis group and control group were investigated via immune infiltration analysis and GSVA. The LASSO regression, nomogram and machine learning models were constructed to predict atherosclerosis risk. The atherosclerosis molecular subtypes clusters were discovered via unsupervised cluster analysis. Subsequently, we used the above research methods to analyze the differential CRGs between clusters (M-CRGs) and evaluate the molecular subtypes identification performance of M-CRGs. Finally, we verified the diagnostic value for atherosclerosis and role in cuproptosis of these CRGs through the validation set and in vitro experiments. Results: Five A-CRGs were identified and they were mainly related to the biological function of copper ion metabolism and immune inflammatory response. The diagnostic models and nomogram of atherosclerosis based on 5 A-CRGs indicated that these genes had well diagnostic value. A total of two molecular subtypes clusters were obtained in the atherosclerosis group. There were many differences in biological functions between these two molecular subtypes clusters, such as mitochondrial outer membrane permeabilization and primary immunodeficiency. In addition, 3 M-CRGs were identified in the 2 clusters. Machine learning models and nomogram constructed based on M-CRGs showed that these genes had well molecular subtypes identification efficacy. In the end, the results of in vitro experiment and validation set confirmed the diagnostic value for atherosclerosis and role in cuproptosis of these genes. Conclusion: The cuproptosis may be a potential pathogenesis of atherosclerosis and CRGs may be promising markers for the diagnosis and molecular subtypes identification of atherosclerosis.

19.
Anal Bioanal Chem ; 404(2): 603-11, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22688664

RESUMEN

In the work discussed in this paper we investigated the feasibility of determination of the pH of a fermented substrate in solid-state fermentation (SSF) of wheat straw. Fourier-transform near-infrared (FT-NIR) spectroscopy was combined with an appropriate multivariate method of analysis. A genetic algorithm and synergy interval partial least-squares (GA-siPLS) were used to select the efficient spectral subintervals and wavelengths by k-fold cross-validation during development of the model. The performance of the final model was evaluated by use of the root mean square error of cross-validation (RMSECV) and correlation coefficient (R (c)) for the calibration set, and verified by use of the root mean square error of prediction (RMSEP) and correlation coefficient (R (p)) for the validation set. The experimental results showed that the optimum GA-siPLS model was achieved by use of seven PLS factors, when four spectral subintervals were selected by siPLS and then 45 wavelength variables were chosen by use of the GA. The predicted precision of the best model obtained was: RMSECV = 0.0583, R (c) = 0.9878, RMSEP = 0.0779, and R (p) = 0.9779. Finally, the superior performance of the GA-siPLS model was demonstrated by comparison with four other PLS models. The overall results indicated that FT-NIR spectroscopy can be successfully used for measurement of pH in solid-state fermentation, and use of the GA-siPLS algorithm is the best means of calibration of the model.


Asunto(s)
Fermentación , Concentración de Iones de Hidrógeno , Espectrofotometría Infrarroja/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Triticum
20.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(4): 970-3, 2012 Apr.
Artículo en Zh | MEDLINE | ID: mdl-22715764

RESUMEN

Fourier transform near-infrared (FT-NIR) spectroscopy was attempted to determine pH, which is one of the key process parameters in solid-state fermentation of crop straws. First, near infrared spectra of 140 solid-state fermented product samples were obtained by near infrared spectroscopy system in the wavelength range of 10 000-4 000 cm(-1), and then the reference measurement results of pH were achieved by pH meter. Thereafter, the extreme learning machine (ELM) was employed to calibrate model. In the calibration model, the optimal number of PCs and the optimal number of hidden-layer nodes of ELM network were determined by the cross-validation. Experimental results showed that the optimal ELM model was achieved with 1040-1 topology construction as follows: R(p) = 0.961 8 and RMSEP = 0.104 4 in the prediction set. The research achievement could provide technological basis for the on-line measurement of the process parameters in solid-state fermentation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA