Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Trop Med ; 2021: 8817987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868410

RESUMEN

Dengue virus (DENV) is the most prevalent arboviral threat worldwide. This virus belonging to genus Flavivirus, Flaviviridae family, is responsible for a wide spectrum of clinical manifestations, ranging from asymptomatic or mild febrile illness (dengue fever) to life-threatening infections (severe dengue). Many sporadic cases and outbreaks have occurred in Senegal since 1970. Nevertheless, this article describes a field investigation of suspected dengue cases, between 05 September 2017 and 17 December 2017 made possible by the deployment of a Mobile Biosafety Laboratory (MBS-Lab). Overall, 960 human sera were collected and tested in the field for the presence of viral RNA by real-time RT-PCR. Serotyping, sequencing of complete E gene, and phylogenetic analysis were also performed. Out of 960 suspected cases, 131 were confirmed dengue cases. The majority of confirmed cases were from Louga community. Serotyping revealed two serotypes, Dengue 1 (100/104; 96, 15%) and Dengue 2 (04/104; 3, 84%). Phylogenetic analysis of the sequences obtained indicated that the Dengue 1 strain was closely related to strains isolated, respectively, in Singapore (Asia) in 2013 (KX380803.1) outbreak and it cocirculated with a Dengue 2 strain closely related to strains from a Burkina Faso dengue outbreak in 2016 (KY62776.1). Our results showed the co-circulation of two dengue virus serotypes during a single outbreak in a short time period. This co-circulation highlighted the need to improve surveillance in order to prevent future potential severe dengue cases through antibody-dependent enhancement (ADE). Interestingly, it also proved the reliability and usefulness of the MBS-Lab for expedient outbreak response at the point of need, which allows early cases management.

2.
Emerg Microbes Infect ; 9(1): 496-504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32106784

RESUMEN

The mesoniviruses (MESOVs) belong to the newly described Mesoniviridae family (Order: Nidovirales). They have never been reported in Senegal until recently during a study in arbovirus emergence with the detection of a new species of MESOV named Dianke virus (DKV) from common mosquitoes from eastern Senegal. Actually, their vector competence for this newly described DKV is unknown. We, therefore, estimated the vector competence of Culex tritaeniorhynchus, Culex quinquefasciatus, Aedes aegypti, and Anopheles gambiae mosquitoes collected in Senegal for DKV using oral infection. Whole bodies, legs/wings, and saliva samples were tested for DKV by RT-PCR to estimate infection, dissemination, and transmission rates. The infectivity of virus particles in the saliva was confirmed by infecting C6/36 cells. Virus transmission rates were up to 95.45% in Culex tritaeniorhynchus, 28% in Cx. quinquefasciatus and 9.09% in Aedes aegypti. Viral particles in the saliva were confirmed infectious by C6/36 cell culture. An. gambiae was able to disseminate DKV only at 20 days post-infection. This study shows that Culex mosquitoes are more competent than Ae. aegypti for DKV, while Anopheles gambiae is not likely a competent vector.


Asunto(s)
Aedes/virología , Mosquitos Vectores , Nidovirales , Animales , Línea Celular , Femenino , Infecciones por Nidovirales/transmisión , Saliva/virología , Senegal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA