Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Hum Genet ; 68(6): 437-443, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36810639

RESUMEN

Among genodermatoses, trichothiodystrophies (TTDs) are a rare genetically heterogeneous group of syndromic conditions, presenting with skin, hair, and nail abnormalities. An extra-cutaneous involvement (craniofacial district and neurodevelopment) can be also a part of the clinical picture. The presence of photosensitivity describes three forms of TTDs: MIM#601675 (TTD1), MIM#616390 (TTD2) and MIM#616395 (TTD3), that are caused by variants afflicting some components of the DNA Nucleotide Excision Repair (NER) complex and with more marked clinical consequences. In the present research, 24 frontal images of paediatric patients with photosensitive TTDs suitable for facial analysis through the next-generation phenotyping (NGP) technology were obtained from the medical literature. The pictures were compared to age and sex-matched to unaffected controls using 2 distinct deep-learning algorithms: DeepGestalt and GestaltMatcher (Face2Gene, FDNA Inc., USA). To give further support to the observed results, a careful clinical revision was undertaken for each facial feature in paediatric patients with TTD1 or TTD2 or TTD3. Interestingly, a distinctive facial phenotype emerged by the NGP analysis delineating a specific craniofacial dysmorphic spectrum. In addition, we tabulated every single detail within the observed cohort. The novelty of the present research includes the facial characterization in children with the photosensitive types of TTDs through the 2 different algorithms. This result can become additional criteria for early diagnosis, and for subsequent targeted molecular investigations as well as a possible tailored multidisciplinary personalized management.


Asunto(s)
Trastornos por Fotosensibilidad , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Trastornos por Fotosensibilidad/diagnóstico , Trastornos por Fotosensibilidad/genética , Cara , Cabello , Fenotipo , Reparación del ADN
2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686163

RESUMEN

Hepatocellular carcinoma (HCC) is a heterogeneous cancer characterized by various cellular subtypes. This study investigates the potential of a combination strategy using immunotherapy and epigenetic reprogramming against HCC. We used a transgenic HCC mouse C57BL/6J-TG(ALB1HBV)44BRI/J to assess the dynamics of the programmed death receptor and its ligand (PD-1/PD-L1) and DNA methylation markers. In parallel, PD-L1 RNA silencing was performed in various human HCC cell lines, while combination therapy was performed in a co-culture system using long-term exposure of 5-Azacytidine (5-AZA) and an anti-PD-L1. Data from the mouse model showed that the expressions of Pdcd1, Pdcd1l1, and DNA methyltransferase 1 (Dnmt1) were significantly higher in HCC as compared to the wild-type mice (p < 0.01), supported by the high presence of PD-L1 methylated DNA. In HCC cell lines, PD-L1 silencing was accompanied by DNMT1 reduction, mostly noted in aggressive HCC cell lines, followed by the dysregulation of the cancer stem cell marker EpCAM. In combination therapy, the growth of HCC cells and lymphocytes was limited by the PD-L1 antibody, further reduced in the presence of 5-AZA by up to 20% (p < 0.001). The data demonstrated that combination therapy might be an option as a potential treatment for heterogeneous HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Metilación de ADN , Regulación hacia Abajo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Azacitidina/farmacología , Azacitidina/uso terapéutico
3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894965

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the number of cases is constantly increasing. Early and accurate HCC diagnosis is crucial to improving the effectiveness of treatment. The aim of the study is to develop a supervised learning framework based on hierarchical community detection and artificial intelligence in order to classify patients and controls using publicly available microarray data. With our methodology, we identified 20 gene communities that discriminated between healthy and cancerous samples, with an accuracy exceeding 90%. We validated the performance of these communities on an independent dataset, and with two of them, we reached an accuracy exceeding 80%. Then, we focused on two communities, selected because they were enriched with relevant biological functions, and on these we applied an explainable artificial intelligence (XAI) approach to analyze the contribution of each gene to the classification task. In conclusion, the proposed framework provides an effective methodological and quantitative tool helping to find gene communities, which may uncover pivotal mechanisms responsible for HCC and thus discover new biomarkers.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Inteligencia Artificial , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Marcadores Genéticos , Estado de Salud
4.
Int J Mol Sci ; 23(8)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35457006

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with limited therapeutic options and short overall survival. iCCA is characterized by a strong desmoplastic reaction in the surrounding ecosystem that likely affects tumoral progression. Overexpression of the Notch pathway is implicated in iCCA development and progression. Our aim was to investigate the effectiveness of Crenigacestat, a selective inhibitor of NOTCH1 signaling, against the cross-talk between cancer cells and the surrounding ecosystem in an in vivo HuCCT1-xenograft model. In the present study, a transcriptomic analysis approach, validated by Western blotting and qRT-PCR on iCCA tumor masses treated with Crenigacestat, was used to study the molecular pathways responsive to drug treatment. Our results indicate that Crenigacestat significantly inhibited NOTCH1 and HES1, whereas tumor progression was not affected. In addition, the drug triggered a strong immune response and blocked neovascularization in the tumor ecosystem of the HuCCT1-xenograft model without affecting the occurrence of fibrotic reactions. Therefore, although these data need further investigation, our observations confirm that Crenigacestat selectively targets NOTCH1 and that the desmoplastic response in iCCA likely plays a key role in both drug effectiveness and tumor progression.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Colangiocarcinoma/metabolismo , Ecosistema , Humanos , Microambiente Tumoral
5.
Int J Mol Sci ; 22(23)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884894

RESUMEN

Hepatocellular carcinoma (HCC) is a highly lethal cancer, and although a few drugs are available for treatment, therapeutic effectiveness is still unsatisfactory. New drugs are urgently needed for hepatocellular carcinoma (HCC) patients. In this context, reliable preclinical assays are of paramount importance to screen the effectiveness of new drugs and, in particular, measure their effects on HCC cell proliferation. However, cell proliferation measurement is a time-consuming and operator-dependent procedure. The aim of this study was to validate an engineered miniaturized on-chip platform for real-time, non-destructive cell proliferation assays and drug screening. The effectiveness of Sorafenib, the first-line drug mainly used for patients with advanced HCC, was tested in parallel, comparing the gold standard 96-well-plate assay and our new lab-on-chip platform. Results from the lab-on-chip are consistent in intra-assay replicates and comparable to the output of standard crystal violet proliferation assays for assessing Sorafenib effectiveness on HCC cell proliferation. The miniaturized platform presents several advantages in terms of lesser reagents consumption, operator time, and costs, as well as overcoming a number of technical and operator-dependent pitfalls. Moreover, the number of cells required is lower, a relevant issue when primary cell cultures are used. In conclusion, the availability of inexpensive on-chip assays can speed up drug development, especially by using patient-derived samples to take into account disease heterogeneity and patient-specific characteristics.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular , Evaluación Preclínica de Medicamentos/métodos , Dispositivos Laboratorio en un Chip , Neoplasias Hepáticas/tratamiento farmacológico , Sorafenib/farmacología , Antineoplásicos/farmacología , Carcinoma Hepatocelular/fisiopatología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Neoplasias Hepáticas/fisiopatología
6.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769191

RESUMEN

The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFß) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFß on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFß receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFß-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFß-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFß as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFß signaling as a therapeutic target in HCC patients.


Asunto(s)
Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Microambiente Tumoral , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Carcinoma Hepatocelular/patología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Hepáticas/patología , Linfocitos T Reguladores/patología , Migración Transendotelial y Transepitelial
7.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073989

RESUMEN

(1) Background: The transforming growth factor (TGF)-ß plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-ß expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-ß induced suppressor effects, responding to this cytokine undergoing epithelial-mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-ß in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-ß when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-ß in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Metaboloma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Células Hep G2 , Humanos , Metaboloma/genética , Metabolómica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transcriptoma/genética
8.
Semin Liver Dis ; 39(1): 53-69, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30586675

RESUMEN

Therapeutic attempts to treat hepatocellular carcinoma (HCC) frequently result in a poor response or treatment failure. The efficacy of approved drugs and survival expectancies is affected by an ample degree of variability that can be explained at least in part by the enormous between-patient cellular and molecular heterogeneity of this neoplasm. Transforming growth factor-ß (TGF-ß) is hyperactivated in a large fraction of HCCs, where it influences complex interactive networks covering multiple cell types and a plethora of other local soluble ligands, ultimately establishing several malignancy traits. This cytokine boosts the invasiveness of cancerous epithelial cells through promoting the epithelial-to-mesenchymal transition program, but also skews the phenotype of immune cells toward a tumor-supporting status. Here, we discuss recent strategies pursued to offset TGF-ß-dependent processes that promote metastatic progression and immune surveillance escape in solid cancers, including HCC. Moreover, we report findings indicating that TGF-ß reduces the expression of the proinflammatory factors CCL4 and interleukin-1ß (IL-1ß in human ex vivo treated HCC tissues. While this is consistent with the anti-inflammatory properties of TGF-ß, whether it is an outright tumor promoter or suppressor is still a matter of some debate. Indeed, IL-1ß has also been shown to support angiogenesis and cell invasiveness in some cancers. In addition, we describe an inhibitory effect of TGF-ß on the secretion of CCL2 and CXCL1 by HCC-derived fibroblasts, which suggests the existence of an indirect stroma-mediated functional link between TGF-ß and downstream immunity.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Invasividad Neoplásica , Linfocitos T Reguladores/metabolismo
9.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597907

RESUMEN

The epithelial mesenchymal transition (EMT) is a physiological multistep process involving epithelial cells acquiring a mesenchymal-like phenotype. It is widely demonstrated that EMT is linked to tumor progression and metastasis. The transforming growth factor (TGF)-ß pathways have been widely investigated, but its role in the hepatocarcinoma EMT is still unclear. While the biochemical pathways have been extensively studied, the alteration of biomechanical behavior correlated to cellular phenotype and motility is not yet fully understood. To better define the involvement of TGF-ß1 in the metastatic progression process in different hepatocarcinoma cell lines (HepG2, PLC/PRF/5, HLE), we applied a systematic morphomechanical approach in order to investigate the physical and the structural characteristics. In addition, we evaluated the antitumor effect of LY2157299, a TGF-ßR1 kinase inhibitor, from a biomechanical point of view, using Atomic Force and Confocal Microscopy. Our approach allows for validation of biological data, therefore it may be used in the future as a diagnostic tool to be combined with conventional biomolecular techniques.


Asunto(s)
Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Mecanotransducción Celular , Factor de Crecimiento Transformador beta/metabolismo , Biomarcadores , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Citoesqueleto/metabolismo , Módulo de Elasticidad , Humanos , Neoplasias Hepáticas/patología , Microscopía de Fuerza Atómica , Clasificación del Tumor
10.
Int J Mol Sci ; 19(5)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29701666

RESUMEN

Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Microambiente Celular , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Matriz Extracelular/metabolismo , Humanos , Factor de Crecimiento Transformador beta/genética
11.
Hepatology ; 64(6): 2103-2117, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27639064

RESUMEN

In patients with hepatocellular carcinoma (HCC) receiving sorafenib, drug resistance is common. HCC develops in a microenvironment enriched with extracellular matrix proteins including laminin (Ln)-332, produced by hepatic stellate cells (HSCs). Ln-332 is the ligand of α3ß1 and α6ß4 integrins, differently expressed on the HCC cell surface, that deliver intracellular pathways. The aim of this study was to investigate the effect of Ln-332 on sorafenib's effectiveness. HCC cells were challenged with sorafenib in the presence of Ln-332 and of HSC conditioned medium (CM). Sorafenib impaired HCC cell proliferation and induced apoptosis. HSC-CM or Ln-332 inhibited sorafenib's effectiveness in HCC cells expressing both α3ß1 and α6ß4. Inhibiting α3 but not α6 integrin subunit using blocking antibodies or small interfering RNA abrogated the protection induced by Ln-332 and HSC-CM. Hep3B cells expressing α6ß4 but lacking the α3 integrin were insensitive to Ln-332 and HSC-CM protective effects. Hep3B α3-positive, but not wild-type and scramble transfected, cells acquired protection by sorafenib when plated on Ln-332-CM or HSCs. Sorafenib dephosphorylated focal adhesion kinase (FAK) and extracellular signal-regulated kinases 1/2, whereas Ln-332 and HSC-CM partially restored the pathways. Silencing FAK, but not extracellular signal-regulated kinases 1/2, abrogated the protection induced by Ln-332 and HSC-CM, suggesting a specific role for FAK. Sorafenib down-regulated total FAK, inducing its proteasomal degradation, while Ln-332 and HSC-CM promoted the escape of FAK from ubiquitination, probably inducing a preferential membrane localization. CONCLUSION: This study unveils a novel mechanism of sorafenib resistance depending on the α3ß1/Ln-332 axis and requiring FAK ubiquitination, providing new insights into personalizing therapy for patients with HCC. (Hepatology 2016;64:2103-2117).


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Resistencia a Antineoplásicos , Proteína-Tirosina Quinasas de Adhesión Focal/fisiología , Células Estrelladas Hepáticas/fisiología , Integrina alfa3/fisiología , Laminina/fisiología , Neoplasias Hepáticas/tratamiento farmacológico , Niacinamida/análogos & derivados , Compuestos de Fenilurea/uso terapéutico , Ubiquitinación , Humanos , Niacinamida/uso terapéutico , Sorafenib , Células Tumorales Cultivadas
12.
Int J Mol Sci ; 18(3)2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28245562

RESUMEN

Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis. Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of ApcMin/+ mice. To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC). Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/ß-catenin pathway. Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the "protective" action of the CB1 receptor is lost.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptor Cannabinoide CB1/metabolismo , Alimentación Animal , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Ácidos Grasos Omega-3/administración & dosificación , Expresión Génica , Genes APC , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Transgénicos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Receptor Cannabinoide CB1/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Hepatol ; 65(4): 798-808, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27212245

RESUMEN

The epithelial to mesenchymal transition (EMT) is a multistep biological process whereby epithelial cells change in plasticity by transient de-differentiation into a mesenchymal phenotype. EMT and its reversal, mesenchymal to epithelial transition (MET), essentially occur during embryogenetic morphogenesis and have been increasingly described in fibrosis and cancer during the last decade. In carcinoma progression, EMT plays a crucial role in early steps of metastasis when cells lose cell-cell contacts due to ablation of E-cadherin and acquire increased motility to spread into surrounding or distant tissues. Epithelial plasticity has become a hot issue in hepatocellular carcinoma (HCC), as strong inducers of EMT such as transforming growth factor-ß are able to orchestrate both fibrogenesis and carcinogenesis, showing rising cytokine levels in cirrhosis and late stage HCC. In this review, we consider the significance of EMT-MET in malignant hepatocytes as well as changes in the plasticity of hepatic stellate cells for cellular heterogeneity of HCC, and further aim at explaining the current limiting insights into EMT by snapshot analyses of HCC tissues. Recent advances in the identification of clinically relevant mechanisms that impinge on important EMT-transcription factors, as well as on miRNAs causing EMT signatures and HCC progression are highlighted. In addition, we draw particular attention to framing EMT in the context of potential clinical relevance for HCC patients. We conclude that some aspects of EMT are still elusive and further studies are required to better link the clinical management of HCC with biomarkers and targeted therapies related to EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Cadherinas , Carcinoma Hepatocelular , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas , Factor de Crecimiento Transformador beta
14.
Gut ; 63(10): 1668-76, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053718

RESUMEN

The goal of personalised therapy based on hepatocellular carcinoma (HCC) molecular characteristics is still beyond our grasp. Systemic treatments show poor efficacy, mainly because of the great heterogeneity of the tumour. Indeed, differences in aetiology, disease stage and biochemical composition of the fibrotic liver make cirrhosis itself a highly dyshomogeneous disease. Cancer cells grow in a cirrhotic microenvironment, interacting with stromal cells and engaging matrix components that differ from patient to patient, hampering the development of drugs to treat all patients. Growing evidence suggests a role for the cross-talk between HCC and the host stroma in driving disease progression and hence prognosis and survival. Many efforts have been devoted to identifying genes responsible for good or bad prognosis, but no study has yet proven helpful in guiding therapeutic choices and management over time, also taking into account the development of drug resistance. The questions of what to target and in which patient are still unsolved. In the personalised therapy scenario, the patient rather than the disease becomes the target of the therapy. However, this still requires an evidence-based medical approach. Herein, we will discuss how individual differences in terms of quality and quantity of the tissue microenvironment components affect progression of HCC. Then, we will highlight potential druggable pathways, also considering ongoing clinical trials. The development of biomarkers will be discussed in the light of new experimental research conducted with the aim of moving towards personalised therapy in patients with HCC.


Asunto(s)
Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Medicina de Precisión/métodos , Microambiente Tumoral , Progresión de la Enfermedad , Humanos
15.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672323

RESUMEN

Extracellular matrix (ECM) has a well-recognized impact on the progression of solid tumors, including hepatocellular carcinoma (HCC). Laminin 332 (Ln332) is a ECM molecule of epithelial basal lamina, composed of three polypeptide chains (α3, ß3, and γ2), that is usually poorly expressed in the normal liver but is detected at high levels in HCC. This macromolecule was shown to promote the proliferation, epithelial-to-mesenchymal transition (EMT), and drug resistance of HCC cells. The monomeric γ2 chain is up-regulated and localized preferentially at the invasive edge of metastatic intrahepatic HCC nodules, suggesting its potential involvement in the acquisition of invasive properties of HCC cells. HCC cells were tested in in vitro adhesion, scattering, and transwell migration assays in response to fibronectin and the Ln332 and Ln332 γ2 chains, and the activation status of major signaling pathways involved was evaluated. Here, we show that the Ln332 γ2 chain promotes HCC the cell adhesion, migration, and scattering of HCC cells that express the Ln332 receptor α3ß1 integrin, proving to be a causal factor of the EMT program achievement. Moreover, we found that efficient HCC cell adhesion and migration on γ2 require the activation of the small cytosolic GTPase Rac1 and ERKs signaling. These data suggest that the γ2 chain, independently from the full-length Ln332, can contribute to the pro-invasive potential of aggressive HCC cell subpopulations.

16.
Biomedicines ; 11(2)2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36830879

RESUMEN

Hepatocellular carcinoma (HCC) is a malignancy marked by heterogeneity. This study aimed to discover target molecules for potential therapeutic efficacy that may encompass HCC heterogeneity. In silico analysis using published datasets identified 16 proto-oncogenes as potential pharmacological targets. We used an immortalized hepatocyte (IHH) and five HCC cell lines under two subtypes: S1/TGFß-Wnt-activated (HLE, HLF, and JHH6) and the S2/progenitor subtype (HepG2 and Huh7). Three treatment modalities, 5 µM 5-Azacytidine, 50 µM Sorafenib, and 20 nM PD-L1 gene silencing, were evaluated in vitro. The effect of treatments on the proto-oncogene targets was assessed by gene expression and Western blot analysis. Our results showed that 10/16 targets were upregulated in HCC cells, where cells belonging to the S2/progenitor subtype had more upregulated targets compared to the S1/TGFß-Wnt-activated subtype (81% vs. 62%, respectively). Among the targets, FGR was consistently down-regulated in the cell lines following the three different treatments. Sorafenib was effective to down-regulate targets in S2/progenitor subtype while PD-L1 silencing was able to decrease targets in all HCC subtypes, suggesting that this treatment strategy may comprise cellular heterogeneity. This study strengthens the relevance of liver cancer cellular heterogeneity in response to cancer therapies.

17.
J Exp Clin Cancer Res ; 42(1): 197, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37550785

RESUMEN

BACKGROUND: Autotaxin (ATX) is a secreted enzyme that converts lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA stimulates cell proliferation and migration and promotes wound repair following tissue damage. ATX levels are directly correlated with stage and grade in several human cancers. Several small molecule ATX inhibitors have been developed in recent years. IOA-289 is a potent ATX inhibitor, developed to treat cancers containing fibrosis. In this study, we tested IOA-289 treatment on different gastrointestinal tract tumor cell lines, in order to evaluate its effects on viability and motility. METHODS: To determine the effects on cell viability and proliferation of treatment with increasing concentrations of IOA-289, we used the crystal violet assay, a clonogenic assay in matrigel, and we evaluated the inhibitor's effect on formation of 3D spheroids in an in vitro model. The effect of IOA-289 on cell cycle phases was analysed with a redox dye reagent. Cell migration capacity was evaluated by wound healing assay and transwell migration assay. To evaluate the pro-apoptotic effect of the inhibitor, cells were stained with Annexin V and immunofluorescence and flow cytometry analysis were performed. An antibody array was also used, to discriminate, in various samples, the differential expression of 43 proteins involved in the apoptosis pathway. RESULTS: We found that IOA-289 is able to inhibit both growth and migration of gastrointestinal tract tumor cell lines, both in 2D (crystal violet assay) and 3D in vitro models (spheroid formation and clonogenic assay in matrigel). This effect is dose-dependent, and the drug is most effective when administered in FBS-free culture medium. The inhibitory effect on cell growth is due to a pro-apoptotic effect of IOA-289. Staining with FITC-conjugated Annexin V showed that IOA-289 induced a dose-dependent increase in fluorescence following incubation for 24 h, and apoptotic cells were also distinguished in flow cytometry using Annexin/PI staining. The antibody array shows that treatment with IOA-289 causes the increased expression of several pro-apoptotic proteins in all tested cell lines. CONCLUSIONS: These results indicate that IOA-289 may be an effective drug for the treatment of tumors of the gastrointestinal tract, particularly those characterized by a high degree of fibrosis.


Asunto(s)
Neoplasias Gastrointestinales , Inhibidores de Fosfodiesterasa , Humanos , Anexina A5 , Línea Celular Tumoral , Fibrosis , Neoplasias Gastrointestinales/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas , Inhibidores de Fosfodiesterasa/farmacología , Evaluación Preclínica de Medicamentos
18.
Biomedicines ; 12(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38255193

RESUMEN

Aggressive hepatocellular carcinoma (HCC) overexpressing Angiopoietin-2 (ANG-2) (a protein linked with angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT)), shares 95% of up-regulated genes and a similar poor prognosis with the proliferative subgroup of intrahepatic cholangiocarcinoma (iCCA). We analyzed the pro-invasive effect of ANG-2 and its regulator vascular endothelial growth factor (VEGF) on HCC and CCA spheroids to uncover posUsible common ways of response. Four cell lines were used: Hep3B and HepG2 (HCC), HuCC-T1 (iCCA), and EGI-1 (extrahepatic CCA). We treated the spheroids with recombinant human (rh) ANG-2 and/or VEGF and then observed the changes at the baseline, after 24 h, and again after 48 h. Proangiogenic stimuli increased migration and invasion capability in HCC- and iCCA-derived spheroids and were associated with a modification in EMT phenotypic markers (a decrease in E-cadherin and an increase in N-cadherin and Vimentin), especially at the migration front. Inhibitors targeting ANG-2 (Trebananib) and the VEGF (Bevacizumab) effectively blocked the migration ability of spheroids that had been stimulated with rh-ANG-2 and rh-VEGF. Overall, our findings highlight the critical role played by ANG-2 and the VEGF in enhancing the ability of HCC- and iCCA-derived spheroids to migrate and invade, which are key processes in cancer progression.

19.
Redox Biol ; 65: 102818, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37463530

RESUMEN

The NADPH oxidase NOX4 has been proposed as necessary for the apoptosis induced by the Transforming Growth Factor-beta (TGF-ß) in hepatocytes and hepatocellular carcinoma (HCC) cells. However, whether NOX4 is required for TGF-ß-induced canonical (SMADs) or non-canonical signals is not fully understood yet, neither its potential involvement in other parallel actions induced by TGF-ß. In this work we have used CRISPR Cas9 technology to stable attenuate NOX4 expression in HCC cells. Results have indicated that NOX4 is required for an efficient SMAD2/3 phosphorylation in response to TGF-ß, whereas non-canonical signals, such as the phosphorylation of the Epidermal Growth Receptor or AKT, are higher in NOX4 silenced cells. TGF-ß-mediated inhibition of cell proliferation and viability is attenuated in NOX4 silenced cells, correlating with decreased response in terms of apoptosis, and maintenance of high expression of MYC and CYCLIN D1. These results would indicate that NOX4 is required for all the tumor suppressor actions of TGF-ß in HCC. However, analysis in human HCC tumors has revealed a worse prognosis for patients showing high expression of TGF-ß1-related genes concomitant with high expression of NOX4. Deepening into other tumorigenic actions of TGF-ß that may contribute to tumor progression, we found that NOX4 is also required for TGF-ß-induced migratory effects. The Epithelial-Mesenchymal transition (EMT) program does not appear to be affected by attenuation of NOX4 levels. However, TGF-ß-mediated regulation of cytoskeleton dynamics and focal adhesions require NOX4, which is necessary for TGF-ß-induced increase in the chaperone Hsp27 and correct subcellular localization of Hic-5 within focal adhesions, as well for upregulation of the metalloprotease MMP9. All these results together point to NOX4 as a key element in the whole TGF-ß signaling in HCC cells, revealing an unknown role for NOX4 as tumor promoter in HCC patients presenting activation of the TGF-ß pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Factor de Crecimiento Transformador beta , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Factor de Crecimiento Transformador beta1
20.
Front Endocrinol (Lausanne) ; 14: 1249700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929024

RESUMEN

Introduction: Perinatal asphyxia is one of the three most important causes of neonatal mortality and morbidity. Therapeutic hypothermia represents the standard treatment for infants with moderate-severe perinatal asphyxia, resulting in reduction in the mortality and major neurodevelopmental disability. So far, data in the literature focusing on the endocrine aspects of both asphyxia and hypothermia treatment at birth are scanty, and many aspects are still debated. Aim of this narrative review is to summarize the current knowledge regarding the short- and long-term effects of perinatal asphyxia and of hypothermia treatment on the endocrine system, thus providing suggestions for improving the management of asphyxiated children. Results: Involvement of the endocrine system (especially glucose and electrolyte disturbances, adrenal hemorrhage, non-thyroidal illness syndrome) can occur in a variable percentage of subjects with perinatal asphyxia, potentially affecting mortality as well as neurological outcome. Hypothermia may also affect endocrine homeostasis, leading to a decreased incidence of hypocalcemia and an increased risk of dilutional hyponatremia and hypercalcemia. Conclusions: Metabolic abnormalities in the context of perinatal asphyxia are important modifiable factors that may be associated with a worse outcome. Therefore, clinicians should be aware of the possible occurrence of endocrine complication, in order to establish appropriate screening protocols and allow timely treatment.


Asunto(s)
Asfixia Neonatal , Hipotermia , Recién Nacido , Lactante , Embarazo , Femenino , Niño , Humanos , Asfixia/complicaciones , Hipotermia/complicaciones , Parto , Asfixia Neonatal/complicaciones , Asfixia Neonatal/terapia , Asfixia Neonatal/diagnóstico , Sistema Endocrino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA