Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 419(3): 585-93, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19170656

RESUMEN

HS (heparan sulfate) proteoglycans are key regulators of vital processes in the body. HS chains with distinct sequences bind to various protein ligands, such as growth factors and morphogens, and thereby function as important regulators of protein gradient formation and signal transduction. HS is synthesized through the concerted action of many different ER (endoplasmic reticulum) and Golgi-resident enzymes. In higher organisms, many of these enzymes occur in multiple isoforms that differ in substrate specificity and spatial and temporal expression. In order to investigate how the structural complexity of HS has evolved, in the present study we focused on the starlet sea anemone (Nematostella vectensis), which belongs to the Anthozoa, which are considered to have retained many ancestral features. Members of all of the enzyme families involved in the generation and modification of HS were identified in Nematostella. Our results show that the enzymes are highly conserved throughout evolution, but the number of isoforms varies. Furthermore, the HS polymerases [Ext (exostosin) enzymes Ext1, Ext2 and Ext-like3] represent distinct subgroups, indicating that these three genes have already been present in the last common ancestor of Cnidaria and Bilateria. In situ hybridization showed up-regulation of certain enzymes in specific areas of the embryo at different developmental stages. The specific mRNA expression pattern of particular HS enzymes implies that they may play a specific role in HS modifications during larval development. Finally, biochemical analysis of Nematostella HS demonstrates that the sea anemone synthesizes a polysaccharide with a unique structure.


Asunto(s)
Heparitina Sulfato/biosíntesis , Heparitina Sulfato/química , Anémonas de Mar/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Carbohidratos , Disacáridos/química , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hibridación in Situ , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Anémonas de Mar/embriología , Alineación de Secuencia
2.
J Cell Biol ; 162(2): 341-51, 2003 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-12860968

RESUMEN

The 6-O sulfation states of cell surface heparan sulfate proteoglycans (HSPGs) are dynamically regulated to control the growth and specification of embryonic progenitor lineages. However, mechanisms for regulation of HSPG sulfation have been unknown. Here, we report on the biochemical and Wnt signaling activities of QSulf1, a novel cell surface sulfatase. Biochemical studies establish that QSulf1 is a heparan sulfate (HS) 6-O endosulfatase with preference, in particular, toward trisulfated IdoA2S-GlcNS6S disaccharide units within HS chains. In cells, QSulf1 can function cell autonomously to remodel the sulfation of cell surface HS and promote Wnt signaling when localized either on the cell surface or in the Golgi apparatus. QSulf1 6-O desulfation reduces XWnt binding to heparin and HS chains of Glypican1, whereas heparin binds with high affinity to XWnt8 and inhibits Wnt signaling. CHO cells mutant for HS biosynthesis are defective in Wnt-dependent Frizzled receptor activation, establishing that HS is required for Frizzled receptor function. Together, these findings suggest a two-state "catch or present" model for QSulf1 regulation of Wnt signaling in which QSulf1 removes 6-O sulfates from HS chains to promote the formation of low affinity HS-Wnt complexes that can functionally interact with Frizzled receptors to initiate Wnt signal transduction.


Asunto(s)
Membrana Celular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Sulfatasas/metabolismo , Proteínas de Pez Cebra , Animales , Unión Competitiva , Células CHO , Membrana Celular/enzimología , Células Cultivadas , Cricetinae , Regulación Enzimológica de la Expresión Génica , Aparato de Golgi/enzimología , Aparato de Golgi/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Heparina/metabolismo , Humanos , Modelos Biológicos , Mutación , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Sulfatasas/química , Sulfatasas/genética , Transfección , Proteínas Wnt
3.
Dev Biol ; 311(2): 464-77, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17920055

RESUMEN

Heparan sulfate proteoglycans (HSPGs) are required during muscle regeneration for regulating extracellular signaling pathways. HSPGs interact with growth factors and receptors through heparan sulfate (HS) chains. However, the regulatory mechanisms that control HS sulfation to affect the growth factor-dependent proliferation and differentiation of satellite cells are yet unknown. Here we report the essential functions of extracellular HS 6-O-endosulfatases (Sulfs) during muscle regeneration. We show that quiescent and activated satellite cells differentially express mouse Sulf1 (MSulf1) and MSulf2. MSulfs are not required for the formation of skeletal muscles and satellite cells, but they have redundant, essential roles to promote muscle regeneration, as MSulf double mutant mice exhibit delayed myogenic differentiation and prolonged Pax7 expression after cardiotoxin-induced skeletal muscle injury, while single MSulf knockouts regenerate normally. HS structural analysis demonstrates that Sulfs are regulatory HS-modifying enzymes that control HS 6-O-desulfation of activated satellite cells. Mechanistically, we show that MSulfs repress FGF2 signaling in activated satellite cells, leading us to propose that MSulfs are growth factor signaling sensors to control the proliferation to differentiation switch of satellite cells to initiate differentiation during regeneration. Our results establish Sulfs as essential regulators of HS-dependent growth factor signaling in the adult muscle stem cell niche.


Asunto(s)
Diferenciación Celular/fisiología , Músculo Esquelético , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Transducción de Señal/fisiología , Sulfatasas/metabolismo , Sulfotransferasas/metabolismo , Animales , Ciclo Celular/fisiología , Células Cultivadas , Disacáridos/química , Proteoglicanos de Heparán Sulfato/química , Proteoglicanos de Heparán Sulfato/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/citología , Sulfatasas/genética , Sulfotransferasas/genética
4.
Development ; 134(18): 3327-38, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17720696

RESUMEN

Heparan sulfate (HS) plays an essential role in extracellular signaling during development. Biochemical studies have established that HS binding to ligands and receptors is regulated by the fine 6-O-sulfated structure of HS; however, mechanisms that control sulfated HS structure and associated signaling functions in vivo are not known. Extracellular HS 6-O-endosulfatases, SULF1 and SULF2, are candidate enzymatic regulators of HS 6-O-sulfated structure and modulate HS-dependent signaling. To investigate Sulf regulation of developmental signaling, we have disrupted Sulf genes in mouse and identified redundant functions of Sulfs in GDNF-dependent neural innervation and enteric glial formation in the esophagus, resulting in esophageal contractile malfunction in Sulf1(-/-);Sulf2(-/-) mice. SULF1 is expressed in GDNF-expressing esophageal muscle and SULF2 in innervating neurons, establishing their direct functions in esophageal innervation. Biochemical and cell signaling studies show that Sulfs are the major regulators of HS 6-O-desulfation, acting to reduce GDNF binding to HS and to enhance GDNF signaling and neurite sprouting in the embryonic esophagus. The functional specificity of Sulfs in GDNF signaling during esophageal innervation was established by showing that the neurite sprouting is selectively dependent on GDNF, but not on neurotrophins or other signaling ligands. These findings provide the first in vivo evidence that Sulfs are essential developmental regulators of cellular HS 6-O-sulfation for matrix transmission and reception of GDNF signal from muscle to innervating neurons.


Asunto(s)
Esófago/embriología , Esófago/inervación , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Sistema Nervioso Periférico/embriología , Sulfatasas/fisiología , Sulfotransferasas/fisiología , Animales , Esófago/metabolismo , Heparitina Sulfato/metabolismo , Ratones , Ratones Mutantes , Contracción Muscular , Músculo Esquelético/fisiología , Miocitos del Músculo Liso/fisiología , Neuritas/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transducción de Señal , Sulfatasas/genética , Sulfotransferasas/genética
5.
J Biol Chem ; 281(9): 5348-56, 2006 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16326709

RESUMEN

Heparan sulfate (HS) interacts with a variety of proteins and thus mediates numerous complex biological processes. These interactions critically depend on the patterns of O-sulfate groups within the HS chains that determine binding sites for proteins. In particular the distribution of 6-O-sulfated glucosamine residues influences binding and activity of HS-dependent signaling molecules. The protein binding domains of HS show large structural variability, potentially because of differential expression patterns of HS biosynthetic enzymes along with differences in substrate specificity. To investigate whether different isoforms of HS glucosaminyl 6-O-sulfotransferase (6-OST) give rise to differently sulfated domains, we have introduced mouse 6-OST1, 6-OST2, and 6-OST3 in human embryonic kidney 293 cells and compared the effects of overexpression on HS structure. High expression of any one of the 6-OST enzymes resulted in appreciably increased 6-O-sulfation of N-sulfated as well as N-acetylated glucosamine units. The increased 6-O-sulfation was accompanied by a decrease in nonsulfated as well as in iduronic acid 2-O-sulfated disaccharide structures. Furthermore, overexpression led to an altered HS domain structure, the most striking effect was the formation of extended 6-O-sulfated predominantly N-acetylated HS domains. Although the effect was most noticeable in 6-OST3-expressing cells, these results were largely independent of the particular 6-OST isoform expressed and mainly influenced by the level of overexpression.


Asunto(s)
Acetilglucosamina/metabolismo , Heparitina Sulfato/metabolismo , Isoenzimas/metabolismo , Sulfotransferasas/metabolismo , Acetilglucosamina/química , Animales , Secuencia de Carbohidratos , Línea Celular , Disacáridos/química , Disacáridos/metabolismo , Heparitina Sulfato/química , Humanos , Isoenzimas/genética , Ratones , Datos de Secuencia Molecular , Sulfotransferasas/genética , Radioisótopos de Azufre/metabolismo
6.
J Biol Chem ; 281(8): 4969-76, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16377625

RESUMEN

The extracellular sulfatases (Sulfs) are an evolutionally conserved family of heparan sulfate (HS)-specific 6-O-endosulfatases. These enzymes remodel the 6-O-sulfation of cell surface HS chains to promote Wnt signaling and inhibit growth factor signaling for embryonic tissue patterning and control of tumor growth. In this study we demonstrate that the avian HS endosulfatases, QSulf1 and QSulf2, exhibit the same substrate specificity toward a subset of trisulfated disaccharides internal to HS chains. Further, we show that both QSulfs associate exclusively with cell membrane and are enzymatically active on the cell surface to desulfate both cell surface and cell matrix HS. Mutagenesis studies reveal that conserved amino acid regions in the hydrophilic domains of QSulf1 and QSulf2 have multiple functions, to anchor Sulf to the cell surface, bind to HS substrates, and to mediate HS 6-O-endosulfatase enzymatic activity. Results of our current studies establish the hydrophilic domain (HD) of Sulf enzymes as an essential multifunctional domain for their unique endosulfatase activities and also demonstrate the extracellular activity of Sulfs for desulfation of cell surface and cell matrix HS in the control of extracellular signaling for embryonic development and tumor progression.


Asunto(s)
Sulfatasas/química , Secuencia de Aminoácidos , Animales , Western Blotting , Línea Celular , Membrana Celular/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico , Clonación Molecular , Cartilla de ADN/química , ADN Complementario/metabolismo , Matriz Extracelular/metabolismo , Biblioteca de Genes , Aparato de Golgi/metabolismo , Heparitina Sulfato/química , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Codorniz , Especificidad por Sustrato , Sulfatasas/fisiología , Transfección
7.
J Biol Chem ; 278(27): 24371-6, 2003 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12702732

RESUMEN

Heparan sulfate mediates numerous complex biological processes. Its action critically depends on the amount and the positions of O-sulfate groups (iduronyl 2-O-sulfates, glucosaminyl 6-O- and 3-O-sulfates) that form binding sites for proteins. The structures and distribution of these protein-binding domains are influenced by the expression and substrate specificity of heparan sulfate biosynthetic enzymes. We describe a general approach to assess substrate specificities of enzymes involved in glycosaminoglycan metabolism, here applied to 6-O-sulfotransferases involved in heparan sulfate biosynthesis. To understand how 2-O-sulfation affects subsequent 6-O-sulfation reactions, the substrate specificity of 6-O-sulfotransferase 3 was probed using substrates from a heparin-based octasaccharide library. Purified 3H-labeled N-sulfated octasaccharides from a library designed to sample 2-O-sulfated motifs were used as sulfate acceptors, 3'-phosphoadenosine 5'-phosphosulfate as sulfate donor, and cell extract from 6-O-sulfotransferase 3-overexpressing 293 cells as enzyme source in the 6-O-sulfotransferase-catalyzed reactions. The first 6-O-sulfate group was preferentially incorporated at the internal glucosamine unit of the octasaccharide substrate. As the reaction proceeded, the octasaccharides acquired three 6-O-sulfate groups. The specificities toward competing octasaccharide substrates, for 6-O-sulfotransferase 2 and 6-O-sulfotransferase 3, were determined using overexpressing 293 cell extracts and purified octasaccharides. Both 6-O-sulfotransferases showed a preference for 2-O-sulfated substrates. The specificity toward substrates with two to three 2-O-sulfate groups was three to five times higher as compared with octasaccharides with no or one 2-O-sulfate group.


Asunto(s)
Sulfotransferasas/metabolismo , Animales , Línea Celular , Técnicas Químicas Combinatorias , Heparitina Sulfato/metabolismo , Humanos , Ratones , Oligosacáridos , Especificidad por Sustrato/genética , Sulfatos , Sulfotransferasas/genética
8.
Biochem J ; 372(Pt 2): 371-80, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12611590

RESUMEN

Glycosaminoglycan heparan sulphate interacts with a variety of proteins, such as growth factors, cytokines, enzymes and inhibitors and, thus, influences cellular functions, including adhesion, motility, differentiation and morphogenesis. The interactions generally involve saccharide domains in heparan sulphate chains, with precisely located O-sulphate groups. The 6-O-sulphate groups on glucosamine units, supposed to be involved in various interactions of functional importance, occur in different structural contexts. Three isoforms of the glucosaminyl 6-O-sulphotransferase (6-OST) have been cloned and characterized [H. Habuchi, M. Tanaka, O. Habuchi, K. Yoshida, H. Suzuki, K. Ban and K. Kimata (2000) J. Biol. Chem. 275, 2859-2868]. We have studied the substrate specificities of the recombinant enzymes using various O-desulphated poly- and oligo-saccharides as substrates, and using adenosine 3'-phosphate 5'-phospho[(35)S]sulphate as sulphate donor. All three enzymes catalyse 6-O-sulphation of both -GlcA-GlcNS- and -IdoA-GlcNS- (where GlcA represents D-glucuronic acid, NS the N-sulphate group and IdoA the L-iduronic acid) sequences, with preference for IdoA-containing targets, with or without 2-O-sulphate substituents. 6-OST1 showed relatively higher activity towards target sequences lacking 2-O-sulphate, e.g. the -GlcA-GlcNS- disaccharide unit. Sulphation of such non-O-sulphated acceptor sequences was generally favoured at low acceptor polysaccharide concentrations. Experiments using partially O-desulphated antithrombin-binding oligosaccharide as the acceptor revealed 6-O-sulphation of N-acetylated as well as 3-O-sulphated glucosamine residues with each of the three 6-OSTs. We conclude that the three 6-OSTs have qualitatively similar substrate specificities, with minor differences in target preference.


Asunto(s)
Glucosamina/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Sulfotransferasas/metabolismo , Animales , Células COS/enzimología , Secuencia de Carbohidratos , Bovinos , Chlorocebus aethiops , Cromatografía Líquida de Alta Presión , Mucosa Intestinal/metabolismo , Pulmón/metabolismo , Ratones , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Isoformas de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Sulfotransferasas/química , Sulfotransferasas/genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA