Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 630(8017): 712-719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839957

RESUMEN

Genetic screens have transformed our ability to interrogate cellular factor requirements for viral infections1,2, but most current approaches are limited in their sensitivity, biased towards early stages of infection and provide only simplistic phenotypic information that is often based on survival of infected cells2-4. Here, by engineering human cytomegalovirus to express single guide RNA libraries directly from the viral genome, we developed virus-encoded CRISPR-based direct readout screening (VECOS), a sensitive, versatile, viral-centric approach that enables profiling of different stages of viral infection in a pooled format. Using this approach, we identified hundreds of host dependency and restriction factors and quantified their direct effects on viral genome replication, viral particle secretion and infectiousness of secreted particles, providing a multi-dimensional perspective on virus-host interactions. These high-resolution measurements reveal that perturbations altering late stages in the life cycle of human cytomegalovirus (HCMV) mostly regulate viral particle quality rather than quantity, establishing correct virion assembly as a critical stage that is heavily reliant on virus-host interactions. Overall, VECOS facilitates systematic high-resolution dissection of the role of human proteins during the infection cycle, providing a roadmap for in-depth study of host-herpesvirus interactions.


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por Citomegalovirus , Citomegalovirus , Interacciones Huésped-Patógeno , ARN Guía de Sistemas CRISPR-Cas , Replicación Viral , Humanos , Línea Celular , Sistemas CRISPR-Cas/genética , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Genoma Viral/genética , Interacciones Huésped-Patógeno/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Virión/genética , Virión/metabolismo , Ensamble de Virus/genética , Liberación del Virus/genética , Replicación Viral/genética
2.
Mol Cell ; 72(5): 862-874.e5, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30318442

RESUMEN

mRNAs carry two layers of information, the genetic code and the information that dictates their post-transcriptional fate. The latter function relies on a complex interplay between cis-elements and trans-regulators, and unbiased identification of these elements is still challenging. To identify cis-elements that control gene expression, we use dimethyl sulfate (DMS) mutational profiling with sequencing and map changes in mRNA secondary structure following viral infection. Our dynamic structural data reveal a major role for ribosomes in unwinding secondary structures, which is further supported by the relationship we uncover between structure and translation efficiency. Moreover, our analysis revealed dozens of regions in viral and cellular mRNAs that exhibit changes in secondary structure. In-depth analysis of these regions reveals cis-elements in 3' UTRs that regulate mRNA stability and elements within coding sequences that control translation. Overall, our study demonstrates how mapping dynamic changes in mRNA structure allows unbiased identification of functional regulatory elements.


Asunto(s)
Citomegalovirus/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Fosfoproteínas/genética , Biosíntesis de Proteínas , ARN Mensajero/química , Proteínas de la Matriz Viral/genética , Línea Celular , Citomegalovirus/efectos de los fármacos , Citomegalovirus/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutágenos/farmacología , Conformación de Ácido Nucleico , Fosfoproteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Ésteres del Ácido Sulfúrico/farmacología , Proteínas de la Matriz Viral/metabolismo
3.
J Virol ; 93(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31292242

RESUMEN

Rho-associated coiled-coil kinase (ROCK) protein is a central kinase that regulates numerous cellular functions, including cellular polarity, motility, proliferation, and apoptosis. Here, we demonstrate that ROCK has antiviral properties, and inhibition of its activity results in enhanced propagation of human cytomegalovirus (HCMV). We show that during HCMV infection, ROCK1 translocates to the nucleus and concentrates in the nucleolus, where it colocalizes with the stress-related chaperone heat shock cognate 71-kDa protein (Hsc70). Gene expression measurements show that inhibition of ROCK activity does not seem to affect the cellular stress response. We demonstrate that inhibition of myosin, one of the central targets of ROCK, also increases HCMV propagation, implying that the antiviral activity of ROCK might be mediated by activation of the actomyosin network. Finally, we demonstrate that inhibition of ROCK results in increased levels of the tegument protein UL32 and of viral DNA in the cytoplasm, suggesting ROCK activity hinders the efficient egress of HCMV particles out of the nucleus. Altogether, our findings illustrate ROCK activity restricts HCMV propagation and suggest this inhibitory effect may be mediated by suppression of capsid egress out of the nucleus.IMPORTANCE ROCK is a central kinase in cells that regulates numerous cellular functions, including cellular polarity, motility, proliferation, and apoptosis. Here we reveal a novel antiviral activity of ROCK during infection with HCMV, a prevalent pathogen infecting most of the population worldwide. We reveal ROCK1 is translocated to the nucleus, where it mainly localizes to the nucleolus. Our findings suggest that ROCK's antiviral activity may be related to activation of the actomyosin network and inhibition of capsid egress out of the nucleus.


Asunto(s)
Citomegalovirus/crecimiento & desarrollo , Citomegalovirus/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Factores Inmunológicos/metabolismo , Liberación del Virus , Quinasas Asociadas a rho/metabolismo , Línea Celular , Nucléolo Celular/metabolismo , Núcleo Celular/virología , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Transporte de Proteínas , Replicación Viral
4.
Eur J Immunol ; 48(3): 546-548, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29193031

RESUMEN

Medullary thymic epithelial cell (mTEC)-restricted expression of autoimmune regulator (Aire) is essential for establishment of immune tolerance. Recently, Aire was also shown to be expressed in cells of hematopietic and reproductive lineages. Thus, the generation of Airefl/fl mouse strain enables the investigation of the cell-specific function of Aire.


Asunto(s)
Tolerancia Inmunológica/genética , Poliendocrinopatías Autoinmunes/genética , Poliendocrinopatías Autoinmunes/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Animales , Células Presentadoras de Antígenos/patología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Poliendocrinopatías Autoinmunes/patología , Reproducción/genética , Reproducción/inmunología , Proteína AIRE
5.
Gastroenterology ; 149(1): 139-50, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25982289

RESUMEN

BACKGROUND & AIMS: Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autoimmune disorder characterized by chronic mucocutaneous candidiasis, hypoparathyroidism, and adrenal insufficiency, but patients also develop intestinal disorders. APECED is an autosomal recessive disorder caused by mutations in the autoimmune regulator (AIRE, which regulates immune tolerance) that allow self-reactive T cells to enter the periphery. Enteric α-defensins are antimicrobial peptides secreted by Paneth cells. Patients with APECED frequently have gastrointestinal symptoms and seroreactivity against secretory granules of Paneth cells. We investigated whether enteric α-defensins are autoantigens in humans and mice with AIRE deficiency. METHODS: We analyzed clinical data, along with serum and stool samples and available duodenal biopsies from 50 patients with APECED collected from multiple centers in Europe. Samples were assessed for expression of defensins and other molecules by quantitative reverse transcription polymerase chain reaction and flow cytometry; levels of antibodies and other proteins were measured by immunohistochemical and immunoblot analyses. Histologic analyses were performed on biopsy samples. We used Aire(-/-) mice as a model of APECED, and studied the effects of transferring immune cells from these mice to athymic mice. RESULTS: Enteric defensins were detected in extraintestinal tissues of patients with APECED, especially in medullary thymic epithelial cells. Some patients with APECED lacked Paneth cells and were seropositive for defensin-specific autoantibodies; the presence of autoantibodies correlated with frequent diarrhea. Aire(-/-) mice developed defensin-specific T cells. Adoptive transfer of these T cells to athymic mice resulted in T-cell infiltration of the gut, loss of Paneth cells, microbial dysbiosis, and the induction of T-helper 17 cell-mediated autoimmune responses resembling those observed in patients with APECED. CONCLUSIONS: In patients with APECED, loss of AIRE appears to cause an autoimmune response against enteric defensins and loss of Paneth cells. Aire(-/-) mice developed defensin-specific T cells that cause intestinal defects similar to those observed in patients with APECED. These findings provide a mechanism by which loss of AIRE-mediated immune tolerance leads to intestinal disorders in patients with APECED.


Asunto(s)
Autoinmunidad , Intestinos/inmunología , Poliendocrinopatías Autoinmunes/inmunología , Factores de Transcripción/genética , alfa-Defensinas/inmunología , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Poliendocrinopatías Autoinmunes/complicaciones , Linfocitos T/inmunología , Adulto Joven , Proteína AIRE
6.
J Exp Med ; 221(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902602

RESUMEN

Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD4-Positivos , Células Epiteliales , Granzimas , Bacterias
7.
Mucosal Immunol ; 16(4): 373-385, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36739089

RESUMEN

Interleukin (IL)-17 protects epithelial barriers by inducing the secretion of antimicrobial peptides. However, the effect of IL-17 on Paneth cells (PCs), the major producers of antimicrobial peptides in the small intestine, is unclear. Here, we show that the targeted ablation of the IL-17 receptor (IL-17R) in PCs disrupts their antimicrobial functions and decreases the frequency of ileal PCs. These changes become more pronounced after colonization with IL-17 inducing segmented filamentous bacteria. Mice with PCs that lack IL-17R show an increased inflammatory transcriptional profile in the ileum along with the severity of experimentally induced ileitis. These changes are associated with a decrease in the diversity of gut microbiota that induces a severe ileum pathology upon transfer to genetically susceptible mice, which can be prevented by the systemic administration of IL-17a/f in microbiota recipients. In an exploratory analysis of a small cohort of pediatric patients with Crohn's disease, we have found that a portion of these patients exhibits a low number of lysozyme-expressing ileal PCs and a high ileitis severity score, resembling the phenotype of mice with IL-17R-deficient PCs. Our study identifies IL-17R-dependent signaling in PCs as an important mechanism that maintains ileal homeostasis through the prevention of dysbiosis.


Asunto(s)
Ileítis , Microbiota , Receptores de Interleucina-17 , Animales , Niño , Humanos , Ratones , Péptidos Antimicrobianos , Disbiosis/microbiología , Ileítis/microbiología , Íleon/microbiología , Inflamación/patología , Interleucina-17 , Células de Paneth/patología , Receptores de Interleucina-17/genética
8.
Elife ; 112022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35099391

RESUMEN

Medullary thymic epithelial cells (mTECs), which produce and present self-antigens, are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for effective T cell selection, many aspects remain enigmatic. Given the recently described heterogeneity of mTECs and DCs, it is unclear whether the antigen acquisition from a particular TEC subset is mediated by preferential pairing with a specific subset of DCs. Using several relevant Cre-based mouse models that control for the expression of fluorescent proteins, we have found that, in regards to CAT, each subset of thymic DCs preferentially targets a distinct mTEC subset(s). Importantly, XCR1+-activated DC subset represented the most potent subset in CAT. Interestingly, thymic DCs can also acquire antigens from more than one mTEC, and of these, monocyte-derived dendritic cells (moDCs) were determined to be the most efficient. moDCs also represented the most potent DC subset in the acquisition of antigen from other DCs. These findings suggest a preferential pairing model for the distribution of mTEC-derived antigens among distinct populations of thymic DCs.


Asunto(s)
Presentación de Antígeno/inmunología , Autoantígenos/metabolismo , Tolerancia Inmunológica , Timo/inmunología , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Timo/citología
9.
Elife ; 92020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31944176

RESUMEN

Human herpesvirus-6 (HHV-6) A and B are ubiquitous betaherpesviruses, infecting the majority of the human population. They encompass large genomes and our understanding of their protein coding potential is far from complete. Here, we employ ribosome-profiling and systematic transcript-analysis to experimentally define HHV-6 translation products. We identify hundreds of new open reading frames (ORFs), including upstream ORFs (uORFs) and internal ORFs (iORFs), generating a complete unbiased atlas of HHV-6 proteome. By integrating systematic data from the prototypic betaherpesvirus, human cytomegalovirus, we uncover numerous uORFs and iORFs conserved across betaherpesviruses and we show uORFs are enriched in late viral genes. We identified three highly abundant HHV-6 encoded long non-coding RNAs, one of which generates a non-polyadenylated stable intron appearing to be a conserved feature of betaherpesviruses. Overall, our work reveals the complexity of HHV-6 genomes and highlights novel features conserved between betaherpesviruses, providing a rich resource for future functional studies.


Asunto(s)
Genoma Viral , Herpesvirus Humano 6/genética , Anotación de Secuencia Molecular , Humanos , Intrones , Sistemas de Lectura Abierta , ARN Largo no Codificante/genética , ARN Mensajero/genética , Ribosomas/metabolismo
10.
Nat Commun ; 11(1): 2361, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398640

RESUMEN

The development of thymic regulatory T cells (Treg) is mediated by Aire-regulated self-antigen presentation on medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), but the cooperation between these cells is still poorly understood. Here we show that signaling through Toll-like receptors (TLR) expressed on mTECs regulates the production of specific chemokines and other genes associated with post-Aire mTEC development. Using single-cell RNA-sequencing, we identify a new thymic CD14+Sirpα+ population of monocyte-derived dendritic cells (CD14+moDC) that are enriched in the thymic medulla and effectively acquire mTEC-derived antigens in response to the above chemokines. Consistently, the cellularity of CD14+moDC is diminished in mice with MyD88-deficient TECs, in which the frequency and functionality of thymic CD25+Foxp3+ Tregs are decreased, leading to aggravated mouse experimental colitis. Thus, our findings describe a TLR-dependent function of mTECs for the recruitment of CD14+moDC, the generation of Tregs, and thereby the establishment of central tolerance.


Asunto(s)
Colitis/inmunología , Células Dendríticas/inmunología , Células Epiteliales/inmunología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Traslado Adoptivo , Animales , Presentación de Antígeno , Autoantígenos/inmunología , Separación Celular , Quimiocinas/inmunología , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Citometría de Flujo , Receptores de Lipopolisacáridos/metabolismo , Ratones , Receptores Inmunológicos/metabolismo , Autotolerancia , Análisis de Secuencia de ARN , Transducción de Señal/inmunología , Análisis de la Célula Individual , Linfocitos T Reguladores/trasplante , Timo/citología , Receptores Toll-Like/metabolismo , Regulación hacia Arriba
11.
Nat Commun ; 10(1): 5176, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729371

RESUMEN

Hematopoiesis in mammalian embryos proceeds through three successive waves of hematopoietic progenitors. Since their emergence spatially and temporally overlap and phenotypic markers are often shared, the specifics regarding their origin, development, lineage restriction and mutual relationships have not been fully determined. The identification of wave-specific markers would aid to resolve these uncertainties. Here, we show that toll-like receptors (TLRs) are expressed during early mouse embryogenesis. We provide phenotypic and functional evidence that the expression of TLR2 on E7.5 c-kit+ cells marks the emergence of precursors of erythro-myeloid progenitors (EMPs) and provides resolution for separate tracking of EMPs from primitive progenitors. Using in vivo fate mapping, we show that at E8.5 the Tlr2 locus is already active in emerging EMPs and in progenitors of adult hematopoietic stem cells (HSC). Together, this data demonstrates that the activation of the Tlr2 locus tracks the earliest events in the process of EMP and HSC specification.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Ratones/embriología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptor Toll-Like 2/metabolismo , Células Madre Adultas/metabolismo , Animales , Femenino , Hematopoyesis , Masculino , Ratones/genética , Ratones/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-kit/genética , Receptor Toll-Like 2/genética
12.
J Exp Med ; 216(5): 1027-1037, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30918005

RESUMEN

The autoimmune regulator (Aire) serves an essential function for T cell tolerance by promoting the "promiscuous" expression of tissue antigens in thymic epithelial cells. Aire is also detected in rare cells in peripheral lymphoid organs, but the identity of these cells is poorly understood. Here, we report that Aire protein-expressing cells in lymph nodes exhibit typical group 3 innate lymphoid cell (ILC3) characteristics such as lymphoid morphology, absence of "classical" hematopoietic lineage markers, and dependence on RORγt. Aire+ cells are more frequent among lineage-negative RORγt+ cells of peripheral lymph nodes as compared with mucosa-draining lymph nodes, display a unique Aire-dependent transcriptional signature, express high surface levels of MHCII and costimulatory molecules, and efficiently present an endogenously expressed model antigen to CD4+ T cells. These findings define a novel type of ILC3-like cells with potent APC features, suggesting that these cells serve a function in the control of T cell responses.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Ganglios Linfáticos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Antígenos CD11/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase II/metabolismo , Inmunidad Innata , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Fenotipo , Transcripción Genética , Proteína AIRE
13.
Front Immunol ; 7: 449, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833610

RESUMEN

The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases, Lck. Upon T-cell antigen receptor (TCR) triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, receptor for activated C kinase 1 (RACK1), was chosen as a viable option, and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant, and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 s after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck, which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation of RACK1-Lck complexes. Importantly, activation-induced Lck redistribution was diminished in primary CD4+ T-cells by an adenoviral-mediated knockdown of RACK1. These results demonstrate that in T cells, RACK1, as an essential component of the multiprotein complex which upon TCR engagement, links the binding of kinase active Lck to elements of the cytoskeletal network and affects the subcellular redistribution of Lck.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA