Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cephalalgia ; 41(7): 827-838, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33525904

RESUMEN

BACKGROUND: TWIK-related spinal cord potassium channel (TRESK) background potassium channels have a key role in controlling resting membrane potential and excitability of sensory neurons. A frameshift mutation leading to complete loss of TRESK function has been identified in members of a family suffering from migraine with aura. In the present study, we examined the role of TRESK channels on nociceptor function in mice. METHODS: Calcium imaging was used to investigate the role of TRESK channels in the modulation of the response evoked by transient receptor potential vanilloid 1 (TRPV1) receptor stimulation in dorsal root ganglion neurons. Release of calcitonin gene-related peptide from trigeminal afferents and changes in meningeal blood flow were also measured. Experiments were performed on wild-type and TRESK knockout animals. RESULTS: Inhibition of TRESK increased the TRPV1-mediated calcium signal in dorsal root ganglion neurons and potentiated capsaicin-induced increases in calcitonin gene-related peptide release and meningeal blood flow. Activation of TRESK decreased the capsaicin sensitivity of sensory neurons, leading to an attenuation of capsaicin-induced increase in meningeal blood flow. In TRESK knockout animals, TRPV1-mediated nociceptive reactions were unaffected by pretreatment with TRESK modulators. CONCLUSIONS: Pharmacological manipulation of TRESK channels influences the TRPV1-mediated functions of nociceptors. Altered TRESK function might contribute to trigeminal nociceptor sensitization in migraine patients.


Asunto(s)
Trastornos Migrañosos , Nociceptores/metabolismo , Canales de Potasio de Dominio Poro en Tándem , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina , Humanos , Ratones , Canales de Potasio , Canales Catiónicos TRPV/genética
2.
Mol Pharmacol ; 95(6): 652-660, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30979812

RESUMEN

Cloxyquin has been reported as a specific activator of TRESK [TWIK-related spinal cord K+ channel (also known as K2P18.1)] background potassium channel. In this study, we have synthetized chemically modified analogs of cloxyquin and tested their effects on TRESK and other K2P channels. The currents of murine K2P channels, expressed heterologously in Xenopus oocytes, were measured by two-electrode voltage clamp, whereas the native background K+ conductance of mouse dorsal root ganglion (DRG) neurons was examined by the whole-cell patch-clamp method. Some of the analogs retained the activator character of the parent compound, but, more interestingly, other derivatives inhibited mouse TRESK current. The inhibitor analogs (A2764 and A2793) exerted state-dependent effects. The degree of inhibition by 100 µM A2764 (77.8% ± 3.5%, n = 6) was larger in the activated state of TRESK (i.e., after calcineurin-dependent stimulation) than in the resting state of the channel (42.8% ± 11.5% inhibition, n = 7). The selectivity of the inhibitor compounds was tested on several K2P channels. A2793 inhibited TWIK-related acid-sensitive K+ channel (TASK)-1 (100 µM, 53.4% ± 13, 5%, n = 5), while A2764 was more selective for TRESK, it only moderately influenced TREK-1 and TWIK-related alkaline pH-activated K+ channel. The effect of A2764 was also examined on the background K+ currents of DRG neurons. A subpopulation of DRG neurons, prepared from wild-type animals, expressed background K+ currents sensitive to A2764, whereas the inhibitor did not affect the currents in the DRG neurons of TRESK-deficient mice. Accordingly, A2764 may prove to be useful for the identification of TRESK current in native cells, and for the investigation of the role of the channel in nociception and migraine. SIGNIFICANCE STATEMENT: TRESK background potassium channel is a potential pharmacological target in migraine and neuropathic pain. In this study, we have identified a selective inhibitor of TRESK, A2764. This compound can inhibit TRESK in native cells, leading to cell depolarization and increased excitability. This new inhibitor may be of use to probe the role of TRESK channel in migraine and nociception.


Asunto(s)
Cloroquinolinoles/síntesis química , Ganglios Espinales/fisiología , Canales de Potasio/metabolismo , Animales , Calcineurina/farmacología , Cloroquinolinoles/química , Cloroquinolinoles/farmacología , Femenino , Ganglios Espinales/efectos de los fármacos , Ratones , Estructura Molecular , Técnicas de Placa-Clamp , Xenopus laevis
3.
Br J Pharmacol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807478

RESUMEN

BACKGROUND AND PURPOSE: Pulmonary arterial hypertension (PAH) is a progressive disease in which chronic membrane potential (Em) depolarisation of the pulmonary arterial smooth muscle cells (PASMCs) causes calcium overload, a key pathological alteration. Under resting conditions, the negative Em is mainly set by two pore domain potassium (K2P) channels, of which the TASK-1 has been extensively investigated. EXPERIMENTAL APPROACH: Ion channel currents and membrane potential of primary cultured human(h) PASMCs were measured using the voltage- and current clamp methods. Intracellular [Ca2+] was monitored using fluorescent microscopy. Pulmonary BP and vascular tone measurements were also performed ex vivo using a rat PAH model. KEY RESULTS: TREK-1 was the most abundantly expressed K2P in hPASMCs of healthy donors and idiopathic(I) PAH patients. Background K+-current was similar in hPASMCs for both groups and significantly enhanced by the TREK activator ML-335. In donor hPASMCs, siRNA silencing or pharmacological inhibition of TREK-1 caused depolarisation, reminiscent of the electrophysiological phenotype of idiopathic PAH. ML-335 hyperpolarised donor hPASMCs and normalised the Em of IPAH hPASMCs. A close link was found between TREK-1 activity and intracellular Ca2+-signalling using a channel activator, ML-335, and an inhibitor, spadin. In the rat, ML-335 relaxed isolated pre-constricted pulmonary arteries and significantly decreased pulmonary arterial pressure in the isolated perfused lung. CONCLUSIONS AND IMPLICATIONS: These data suggest that TREK-1is a key factor in Em setting and Ca2+ homeostasis of hPASMC, and therefore, essential for maintenance of a low resting pulmonary vascular tone. Thus TREK-1 may represent a new therapeutic target for PAH.

4.
Br J Pharmacol ; 174(13): 2102-2113, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28419410

RESUMEN

BACKGROUND AND PURPOSE: Cloxyquin (5-cloroquinolin-8-ol) has been described as an activator of TRESK (K2P 18.1, TWIK-related spinal cord K+ channel) background potassium channel. We have examined the specificity of the drug by testing several K2P channels. We have investigated the mechanism of cloxyquin-mediated TRESK activation, focusing on the differences between the physiologically relevant regulatory states of the channel. EXPERIMENTAL APPROACH: Potassium currents were measured by two-electrode voltage clamp in Xenopus oocytes and by whole-cell patch clamp in mouse dorsal root ganglion (DRG) neurons. KEY RESULTS: Cloxyquin (100 µM) activated mouse and human TRESK 4.4 ± 0.3 (n = 28) and 3.9 ± 0.3-fold (n = 8), respectively. The drug selectively targeted TRESK in the K2P channel family and exerted state-dependent effects. TRESK was potently activated by cloxyquin in the resting state. However, after robust activation of the current by the calcium signal, evoked by stimulation of Gq-coupled receptors, the compound did not influence mouse TRESK and only slightly affected the human channel. The constitutively active mutant channels, mimicking the dephosphorylated state (S276A) or containing altered channel pore (F156A and F364A), were not further stimulated by cloxyquin. In a subpopulation of isolated DRG neurons, cloxyquin substantially activated the background potassium current. CONCLUSIONS AND IMPLICATIONS: Cloxyquin activates TRESK by a Ca2+ /calcineurin-independent mechanism. The drug is specific for TRESK within the K2P channel family and useful for studying TRESK currents in native cells. The state-dependent pharmacological profile of this channel should be considered in the development of therapeutics for migraine and other nociceptive disorders.


Asunto(s)
Cloroquinolinoles/farmacología , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Endogámicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Canales de Potasio/genética , Relación Estructura-Actividad , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA