Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(9): 768-786, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38280232

RESUMEN

In several cases of mitochondrial diseases, the underlying genetic and bioenergetic causes of reduced oxidative phosphorylation (OxPhos) in mitochondrial dysfunction are well understood. However, there is still limited knowledge about the specific cellular outcomes and factors involved for each gene and mutation, which contributes to the lack of effective treatments for these disorders. This study focused on fibroblasts from a patient with Autosomal Dominant Optic Atrophy (ADOA) plus syndrome harboring a mutation in the Optic Atrophy 1 (OPA1) gene. By combining functional and transcriptomic approaches, we investigated the mitochondrial function and identified cellular phenotypes associated with the disease. Our findings revealed that fibroblasts with the OPA1 mutation exhibited a disrupted mitochondrial network and function, leading to altered mitochondrial dynamics and reduced autophagic response. Additionally, we observed a premature senescence phenotype in these cells, suggesting a previously unexplored role of the OPA1 gene in inducing senescence in ADOA plus patients. This study provides novel insights into the mechanisms underlying mitochondrial dysfunction in ADOA plus and highlights the potential importance of senescence in disease progression.


Asunto(s)
Enfermedades Mitocondriales , Atrofia Óptica Autosómica Dominante , Humanos , Atrofia Óptica Autosómica Dominante/genética , Mutación , Autofagia/genética , Fibroblastos , GTP Fosfohidrolasas/genética
2.
Hum Mol Genet ; 32(2): 333-350, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35994048

RESUMEN

Dominant mutations in ubiquitously expressed mitofusin 2 gene (MFN2) cause Charcot-Marie-Tooth type 2A (CMT2A; OMIM 609260), an inherited sensory-motor neuropathy that affects peripheral nerve axons. Mitofusin 2 protein has been found to take part in mitochondrial fusion, mitochondria-endoplasmic reticulum tethering, mitochondrial trafficking along axons, mitochondrial quality control and various types of cancer, in which MFN2 has been indicated as a tumor suppressor gene. Discordant data on the mitochondrial altered phenotypes in patient-derived fibroblasts harboring MFN2 mutations and in animal models have been reported. We addressed some of these issues by focusing on mitochondria behavior during autophagy and mitophagy in fibroblasts derived from a CMT2AMFN2 patient with an MFN2650G > T/C217F mutation in the GTPase domain. This study investigated mitochondrial dynamics, respiratory capacity and autophagy/mitophagy, to tackle the multifaceted MFN2 contribution to CMT2A pathogenesis. We found that MFN2 mutated fibroblasts showed impairment of mitochondrial morphology, bioenergetics capacity, and impairment of the early stages of autophagy, but not mitophagy. Unexpectedly, transcriptomic analysis of mutated fibroblasts highlighted marked differentially expressed pathways related to cell population proliferation and extracellular matrix organization. We consistently found the activation of mTORC2/AKT signaling and accelerated proliferation in the CMT2AMFN2 fibroblasts. In conclusion, our evidence indicates that MFN2 mutation can positively drive cell proliferation in CMT2AMFN2 fibroblasts.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas Mitocondriales , Animales , Proliferación Celular/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Humanos
3.
Neurobiol Dis ; 197: 106536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763444

RESUMEN

CLN8 is an endoplasmic reticulum cargo receptor and a regulator of lysosome biogenesis whose loss of function leads to neuronal ceroid lipofuscinosis. CLN8 has been linked to autophagy and lipid metabolism, but much remains to be learned, and there are no therapies acting on the molecular signatures in this disorder. The present study aims to characterize the molecular pathways involved in CLN8 disease and, by pinpointing altered ones, to identify potential therapies. To bridge the gap between cell and mammalian models, we generated a new zebrafish model of CLN8 deficiency, which recapitulates the pathological features of the disease. We observed, for the first time, that CLN8 dysfunction impairs autophagy. Using autophagy modulators, we showed that trehalose and SG2 are able to attenuate the pathological phenotype in mutant larvae, confirming autophagy impairment as a secondary event in disease progression. Overall, our successful modeling of CLN8 defects in zebrafish highlights this novel in vivo model's strong potential as an instrument for exploring the role of CLN8 dysfunction in cellular pathways, with a view to identifying small molecules to treat this rare disease.


Asunto(s)
Autofagia , Modelos Animales de Enfermedad , Lipofuscinosis Ceroideas Neuronales , Fenotipo , Proteínas de Pez Cebra , Pez Cebra , Animales , Autofagia/fisiología , Autofagia/efectos de los fármacos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Animales Modificados Genéticamente , Trehalosa/farmacología
4.
Neuropediatrics ; 54(3): 211-216, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36693417

RESUMEN

INTRODUCTION: Pyruvate dehydrogenase complex (PDH) deficiency (Online Mendelian Inheritance in Man # 312170) is a relatively common mitochondrial disorder, caused by mutations in the X-linked PDHA1 gene and presenting with a variable phenotypic spectrum, ranging from severe infantile encephalopathy to milder chronic neurological disorders.Isolated peripheral neuropathy as predominant clinical presentation is uncommon. RESULTS: We report on a patient, now 21 years old, presenting at the age of 2 years with recurrent symmetric weakness as first symptom of a PDH deficiency. Neurophysiological evaluation proving a sensory-motor polyneuropathy with conduction blocks and presence of elevated cerebrospinal fluid proteins, suggested a chronic inflammatory demyelinating polyneuropathy. The evidence of high serum lactate and the alterations in oxidative metabolism in muscle biopsy pointed toward the final diagnosis. After starting nutritional supplements, no further episodes occurred. A hemizygous mutation in PDHA1 (p.Arg88Cys) was identified. This mutation has been previously described in five patients with a similar phenotype. A three-dimensional reconstruction demonstrated that mutations affecting this arginine destabilize the interactions between the subunits of the E1 complex. CONCLUSION: We summarize the clinical and genetic characteristics of one patient with PDH deficiency presenting isolated peripheral nervous system involvement. This study highlights that the diagnosis of PDH deficiency should be considered in children with unexplained peripheral neuropathy, even with features suggestive of acquired forms, especially in case of early onset and limited response to treatment. A simple analysis of lactic acid could help to target the diagnosis.In addition, we suggest that the residue Arg88 is the most frequently involved in this specific phenotype of PDH deficiency.


Asunto(s)
Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa , Humanos , Ácido Láctico/líquido cefalorraquídeo , Ácido Láctico/uso terapéutico , Mutación , Fenotipo , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/diagnóstico , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/tratamiento farmacológico , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834939

RESUMEN

Mutations in the receptor expression-enhancing protein 1 gene (REEP1) are associated with hereditary spastic paraplegia type 31 (SPG31), a neurological disorder characterized by length-dependent degeneration of upper motor neuron axons. Mitochondrial dysfunctions have been observed in patients harboring pathogenic variants in REEP1, suggesting a key role of bioenergetics in disease-related manifestations. Nevertheless, the regulation of mitochondrial function in SPG31 remains unclear. To elucidate the pathophysiology underlying REEP1 deficiency, we analyzed in vitro the impact of two different mutations on mitochondrial metabolism. Together with mitochondrial morphology abnormalities, loss-of-REEP1 expression highlighted a reduced ATP production with increased susceptibility to oxidative stress. Furthermore, to translate these findings from in vitro to preclinical models, we knocked down REEP1 in zebrafish. Zebrafish larvae showed a significant defect in motor axon outgrowth leading to motor impairment, mitochondrial dysfunction, and reactive oxygen species accumulation. Protective antioxidant agents such as resveratrol rescued free radical overproduction and ameliorated the SPG31 phenotype both in vitro and in vivo. Together, our findings offer new opportunities to counteract neurodegeneration in SPG31.


Asunto(s)
Proteínas de Transporte de Membrana , Estrés Oxidativo , Paraplejía Espástica Hereditaria , Animales , Axones/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Estrés Oxidativo/genética , Paraplejía Espástica Hereditaria/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982531

RESUMEN

Milk oligosaccharides are a complex class of carbohydrates that act as bioactive factors in numerous defensive and physiological functions, including brain development. Early nutrition can modulate nervous system development and can lead to epigenetic imprinting. We attempted to increase the sialylated oligosaccharide content of zebrafish yolk reserves, with the aim of evaluating any short-term effects of the treatment on mortality, locomotor behavior, and gene expression. Wild-type embryos were microinjected with saline solution or solutions containing sialylated milk oligosaccharides extracted from human and bovine milk. The results suggest that burst activity and larval survival rates were unaffected by the treatments. Locomotion parameters were found to be similar during the light phase between control and treated larvae; in the dark, however, milk oligosaccharide-treated larvae showed increased test plate exploration. Thigmotaxis results did not reveal significant differences in either the light or the dark conditions. The RNA-seq analysis indicated that both treatments exert an antioxidant effect in developing fish. Moreover, sialylated human milk oligosaccharides seemed to increase the expression of genes related to cell cycle control and chromosomal replication, while bovine-derived oligosaccharides caused an increase in the expression of genes involved in synaptogenesis and neuronal signaling. These data shed some light on this poorly explored research field, showing that both human and bovine oligosaccharides support brain proliferation and maturation.


Asunto(s)
Leche , Pez Cebra , Humanos , Animales , Leche/química , Pez Cebra/genética , Pez Cebra/metabolismo , Larva/metabolismo , Microinyecciones , Leche Humana/química , Oligosacáridos/farmacología , Oligosacáridos/metabolismo , Expresión Génica
7.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068960

RESUMEN

Genetic defects in the nuclear encoded subunits and assembly factors of cytochrome c oxidase (mitochondrial complex IV) are very rare and are associated with a wide variety of phenotypes. Biallelic pathogenic variants in the COX11 protein were previously identified in two unrelated children with infantile-onset mitochondrial encephalopathies. Through comprehensive clinical, genetic and functional analyses, here we report on a new patient harboring novel heterozygous variants in COX11, presenting with Leigh-like features, and provide additional experimental evidence for a direct correlation between COX11 protein expression and sensitivity to oxidative stress. To sort out the contribution of the single mutations to the phenotype, we employed a multi-faceted approach using Saccharomyces cerevisiae as a genetically manipulable system, and in silico structure-based analysis of human COX11. Our results reveal differential effects of the two novel COX11 mutations on yeast growth, respiration, and cellular redox status, as well as their potential impact on human protein stability and function. Strikingly, the functional deficits observed in patient fibroblasts are recapitulated in yeast models, validating the conservation of COX11's role in mitochondrial integrity across evolutionarily distant organisms. This study not only expands the mutational landscape of COX11-associated mitochondrial disorders but also underscores the continued translational relevance of yeast models in dissecting complex molecular pathways.


Asunto(s)
Enfermedades Mitocondriales , Proteínas de Saccharomyces cerevisiae , Niño , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Enfermedades Mitocondriales/genética , Fibroblastos/metabolismo , Proteínas Transportadoras de Cobre/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo
8.
Clin Genet ; 101(2): 260-264, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34766628

RESUMEN

Bi-allelic alterations in the MDH2 gene have recently been reported in three unrelated toddlers with early-onset severe encephalopathy. Here, we describe a new case of a child carrying novel variants in MDH2. This child presented with early-onset encephalocardiopathy requiring heart transplant and showed cerebellar ataxia and drug-responsive epilepsy; his family history was significant for multiple cancers, a feature often associated with monoallelic variants in MDH2. Functional studies in cultured skin fibroblasts from the proband showed reduced protein levels and impaired enzyme activity, further corroborating the genetic results. The relatively mild neurological presentation and severe cardiac manifestations requiring heart transplant distinguish this case from previous reports. This patient thus expands the spectrum of clinical features associated with MDH2 variants.


Asunto(s)
Alelos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Malato Deshidrogenasa/genética , Mutación , Fenotipo , Niño , Preescolar , Análisis Mutacional de ADN , Genoma Mitocondrial , Humanos , Lactante , Imagen por Resonancia Magnética , Neuroimagen , Secuenciación del Exoma
9.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498898

RESUMEN

OBJECTIVE: To define the prevalence of variants in collagen VI genes through a next-generation sequencing (NGS) approach in undiagnosed patients with suspected neuromuscular disease and to propose a diagnostic flowchart to assess the real pathogenicity of those variants. METHODS: In the past five years, we have collected clinical and molecular information on 512 patients with neuromuscular symptoms referred to our center. To pinpoint variants in COLVI genes and corroborate their real pathogenicity, we sketched a multistep flowchart, taking into consideration the bioinformatic weight of the gene variants, their correlation with clinical manifestations and possible effects on protein stability and expression. RESULTS: In Step I, we identified variants in COLVI-related genes in 48 patients, of which three were homozygous variants (Group 1). Then, we sorted variants according to their CADD score, clinical data and complementary studies (such as muscle and skin biopsy, study of expression of COLVI on fibroblast or muscle and muscle magnetic resonance). We finally assessed how potentially pathogenic variants (two biallelic and 12 monoallelic) destabilize COL6A1-A2-A3 subunits. Overall, 15 out of 512 patients were prioritized according to this pipeline. In seven of them, we confirmed reduced or absent immunocytochemical expression of collagen VI in cultured skin fibroblasts or in muscle tissue. CONCLUSIONS: In a real-world diagnostic scenario applied to heterogeneous neuromuscular conditions, a multistep integration of clinical and molecular data allowed the identification of about 3% of those patients harboring pathogenetic collagen VI variants.


Asunto(s)
Colágeno Tipo VI , Enfermedades Neuromusculares , Humanos , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Enfermedades Neuromusculares/epidemiología , Enfermedades Neuromusculares/genética , Homocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Músculos/metabolismo , Mutación
10.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34361091

RESUMEN

Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as 'mitoexome', 'mitoproteome' and 'mitointeractome' have entered the field of 'mitochondrial medicine'. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders.


Asunto(s)
Encefalopatías/patología , Metabolismo Energético , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Fosforilación Oxidativa , Animales , Encefalopatías/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo
11.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445111

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs-/- larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Fármacos Neuroprotectores/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Ataxia/metabolismo , Ataxia Cerebelosa/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Espasticidad Muscular/metabolismo , Mutación/genética , Fenotipo , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/congénito , Ataxias Espinocerebelosas/metabolismo
12.
Hum Mutat ; 41(7): 1232-1237, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32333447

RESUMEN

Mutations in histidyl-tRNA synthetase (HARS1), an enzyme that charges transfer RNA with the amino acid histidine in the cytoplasm, have only been associated to date with autosomal recessive Usher syndrome type III and autosomal dominant Charcot-Marie-Tooth disease type 2W. Using massive parallel sequencing, we identified bi-allelic HARS1 variants in a child (c.616G>T, p.Asp206Tyr and c.730delG, p.Val244Cysfs*6) and in two sisters (c.1393A>C, p.Ile465Leu and c.910_912dupTTG, p.Leu305dup), all characterized by a multisystem ataxic syndrome. All mutations are rare, segregate with the disease, and are predicted to have a significant effect on protein function. Functional studies helped to substantiate their disease-related roles. Indeed, yeast complementation assays showing that one out of two mutations in each patient is loss-of-function, and the reduction of messenger RNA and protein levels and enzymatic activity in patient's skin-derived fibroblasts, together support the pathogenicity of the identified HARS1 variants in the patient phenotypes. Thus, our efforts expand the allelic and clinical spectrum of HARS1-related disease.


Asunto(s)
Ataxia/genética , Histidina-ARNt Ligasa/genética , Adulto , Alelos , Niño , Femenino , Humanos , Masculino , Mutación Missense
13.
Mol Pharm ; 17(12): 4510-4521, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33112630

RESUMEN

Infantile neural ceroid lipofuscinosis (INCL) is a lysosomal storage disorder characterized by mutations in the CLN1 gene that leads to lack of the lysosomal enzyme palmitoyl-protein thioesterase-1 (PPT1), which causes the progressive death of cortical neurons. Enzyme replacement therapy (ERT) is one of the most promising treatments, but its translation toward a clinical use is hampered by the need to deliver the enzyme to the central nervous system and a more detailed understanding of its capability to restore physiologic conditions at the biochemical and protein level, beyond the simple regulation of enzymatic activity. Targeted nanoparticles can promote protein delivery to the central nervous system and affect biological pathways inside cells. Here, we describe an innovative peptide-based stealth nanoparticle that inhibits serum protein adsorption exploiting transferrin-driven internalization to convey the PPT1 enzyme to transferrin receptor-mediated pathways (endocytosis in this work, or transcytosis, in perspective, in vivo). These enzyme-loaded nanoparticles were able to restore stable levels of enzymatic activity in CLN1 patient's fibroblasts, comparable with the free enzyme, demonstrating that delivery after encapsulation in the nanocarrier does not alter uptake or intracellular trafficking. We also investigate, for the first time, dysregulated pathways of proteome and palmitoylome and their alteration upon enzyme delivery. Our nanoparticles were able of halving palmitoylated protein levels restoring conditions similar to the normal cells. From proteomic analysis, we also highlighted the reduction of the different groups of proteins after treatments with the free or encapsulated enzyme. In conclusion, our system is able to deliver the enzyme to a model of CLN1 disease restoring normal conditions in cells. Investigation of molecular details of pathologic state and enzyme-based correction reveals dysregulated pathways with unprecedented details for CLN1. Finally, we unveil for the first time the dysregulation landscape of palmitoylome and proteome in primary patient-derived fibroblasts and their modifications in response to enzyme administration. These findings will provide a guideline for the validation of future therapeutic strategies based on enzyme replacement therapy or acting at different metabolic levels.


Asunto(s)
Terapia de Reemplazo Enzimático/métodos , Proteínas de la Membrana/administración & dosificación , Nanopartículas/química , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Péptidos/química , Tioléster Hidrolasas/administración & dosificación , Células Cultivadas , Composición de Medicamentos/métodos , Liberación de Fármacos , Pruebas de Enzimas , Fibroblastos , Humanos , Liposomas , Proteínas de la Membrana/genética , Proteínas de la Membrana/farmacocinética , Lipofuscinosis Ceroideas Neuronales/genética , Cultivo Primario de Células , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/farmacocinética
14.
Neuropediatrics ; 51(6): 425-429, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32392611

RESUMEN

RTN4IP1 pathogenic variants (OPA10 syndrome) have been described in patients with early-onset recessive optic neuropathy and recently associated with a broader clinical spectrum, from isolated optic neuropathy to severe encephalopathies with epilepsy. Here we present a case of a patient with a complex clinical picture characterized by bilateral optic nerve atrophy, horizontal nystagmus, myopia, mild intellectual disability, generalized chorea, isolated small subependymal heterotopia, and asynchronous self-resolving midbrain MRI (magnetic resonance imaging) lesions. By using massive gene sequencing, we identified in this patient the c.308G > A (p.Arg103His) homozygous pathogenic variant in the RTN4IP1 gene. Complex movement disorders and relapsing-remitting neuroradiological lesions have not been previously reported in this condition. Our case expands the clinical spectrum of OPA10 syndrome and opens new opportunities for the molecular diagnosis.


Asunto(s)
Proteínas Portadoras/genética , Corea/diagnóstico , Corea/genética , Proteínas Mitocondriales/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Encéfalo/patología , Niño , Corea/complicaciones , Humanos , Masculino , Mutación , Atrofia Óptica/complicaciones
15.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867069

RESUMEN

BACKGROUND: Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. METHODS: After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and -5p transfection in cutaneous melanoma cell lines are investigated. RESULTS: In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. CONCLUSIONS: Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.


Asunto(s)
Regulación hacia Abajo , Melanoma/genética , MicroARNs/genética , Neoplasias Cutáneas/genética , Regiones no Traducidas 3' , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Exosomas/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma/sangre , Persona de Mediana Edad , Transducción de Señal , Neoplasias Cutáneas/sangre , Melanoma Cutáneo Maligno
16.
Hum Mol Genet ; 24(11): 3248-56, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25736212

RESUMEN

We describe the case of a woman in whom combination of a mitochondrial (MT-CYB) and a nuclear (SDHB) mutation was associated with clinical and metabolic features suggestive of a mitochondrial disorder. The mutations impaired overall energy metabolism in the patient's muscle and fibroblasts and increased cellular susceptibility to oxidative stress. To clarify the contribution of each mutation to the phenotype, mutant yeast strains were generated. A significant defect in strains carrying the Sdh2 mutation, either alone or in combination with the cytb variant, was observed. Our data suggest that the SDHB mutation was causative of the mitochondrial disorder in our patient with a possible cumulative contribution of the MT-CYB variant. To our knowledge, this is the first association of bi-genomic variants in the mtDNA and in a nuclear gene encoding a subunit of complex II.


Asunto(s)
Encefalomiopatías Mitocondriales/diagnóstico , Adenosina Trifosfato/metabolismo , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , Diagnóstico Diferencial , Femenino , Humanos , Encefalomiopatías Mitocondriales/genética , Técnicas de Diagnóstico Molecular , Datos de Secuencia Molecular , Mutación Missense , Polimorfismo de Longitud del Fragmento de Restricción , Saccharomyces cerevisiae
18.
Biochem Biophys Res Commun ; 477(1): 137-143, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27291147

RESUMEN

Defective dolichol-phosphate mannose synthase (DPMS) complex is a rare cause of congenital muscular dystrophy associated with hypoglycosylation of alpha-dystroglycan (α-DG) in skeletal muscle. We used the zebrafish (Danio rerio) to model muscle abnormalities due to defects in the subunits of DPMS. The three zebrafish ortholog subunits (encoded by the dpm1, dpm2 and dpm3 genes, respectively) showed high similarity to the human proteins, and their expression displayed localization in the midbrain/hindbrain area and somites. Antisense morpholino oligonucleotides targeting each subunit were used to transiently deplete the dpm genes. The resulting morphant embryos showed early death, muscle disorganization, low DPMS complex activity, and increased levels of apoptotic nuclei, together with hypoglycosylated α-DG in muscle fibers, thus recapitulating most of the characteristics seen in patients with mutations in DPMS. Our results in zebrafish suggest that DPMS plays a role in stabilizing muscle structures and in apoptotic cell death.


Asunto(s)
Distroglicanos/metabolismo , Manosiltransferasas/genética , Músculo Esquelético/patología , Distrofias Musculares/patología , Pez Cebra/metabolismo , Animales , Femenino , Técnicas de Silenciamiento del Gen , Glicosilación , Masculino , Manosiltransferasas/clasificación , Músculo Esquelético/metabolismo , Filogenia , ARN Mensajero/genética
19.
Front Neurosci ; 18: 1375299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911600

RESUMEN

Introduction: Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare incurable neurodegenerative disease caused by mutations in the SACS gene, which codes for sacsin, a large protein involved in protein homeostasis, mitochondrial function, cytoskeletal dynamics, autophagy, cell adhesion and vesicle trafficking. However, the pathogenic mechanisms underlying sacsin dysfunction are still largely uncharacterized, and so attempts to develop therapies are still in the early stages. Methods: To achieve further understanding of how processes are altered by loss of sacsin, we used untargeted proteomics to compare protein profiles in ARSACS fibroblasts versus controls. Results: Our analyses confirmed the involvement of known biological pathways and also implicated calcium and lipid homeostasis in ARSACS skin fibroblasts, a finding further verified in SH-SY5Y SACS -/- cells. Validation through mass spectrometry-based analysis and comparative quantification of lipids by LC-MS in fibroblasts revealed increased levels of ceramides coupled with a reduction of diacylglycerols. Discussion: In addition to confirming aberrant Ca2+ homeostasis in ARSACS, this study described abnormal lipid levels associated with loss of sacsin.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38837640

RESUMEN

OBJECTIVE: Biallelic mutations in PRDX3 have been linked to autosomal recessive spinocerebellar ataxia type 32. In this study, which aims to contribute to the growing body of knowledge on this rare disease, we identified two unrelated patients with mutations in PRDX3. We explored the impact of PRDX3 mutation in patient skin fibroblasts and the role of the gene in neurodevelopment. METHODS: We performed trio exome sequencing that identified mutations in PRDX3 in two unrelated patients. We also performed functional studies in patient skin fibroblasts and generated a "crispant" zebrafish (Danio rerio) model to investigate the role of the gene during nervous system development. RESULTS: Our study reports two additional patients. Patient 1 is a 19-year-old male who showed a novel homozygous c.525_535delGTTAGAAGGTT (p. Leu176TrpfsTer11) mutation as the genetic cause of cerebellar ataxia. Patient 2 is a 20-year-old male who was found to present the known c.425C>G/p. Ala142Gly variant in compound heterozygosity with the p. Leu176TrpfsTer11 one. While the fibroblast model failed to recapitulate the pathological features associated with PRDX3 loss of function, our functional characterization of the prdx3 zebrafish model revealed motor defects, increased susceptibility to reactive oxygen species-triggered apoptosis, and an impaired oxygen consumption rate. CONCLUSIONS: We identified a new variant, thereby expanding the genetic spectrum of PRDX3-related disease. We developed a novel zebrafish model to investigate the consequences of prdx3 depletion on neurodevelopment and thus offered a potential new tool for identifying new treatment opportunities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA