Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Methods Mol Biol ; 479: 147-71, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19083189

RESUMEN

Eukaryotes control many aspects of growth and development such as cell cycle progression and gene expression through the selective degradation of regulatory proteins by way of the 26S proteasome. Generally, proteasomal degradation requires the poly-ubiquitylation of degradation targets by E1 ubiquitin activating enzymes, E2 ubiquitin conjugating enzymes, and E3 ubiquitin ligases. Specificity is brought to the process by E3 ubiquitin ligases, which engage in direct interactions with the degradation substrate to bring it into the proximity of the E2 enzyme. The abundance of genes encoding E3 ligase subunits in plant genomes invites the hypothesis that protein degradation plays an important role in the control of many plant growth processes, and it is therefore not surprising that proteasomal degradation has already been implicated in several important response pathways. However, most of the genes with a predicted role in the ubiquitin-proteasome pathway still remain to be characterized and the identity of their degradation substrates needs to be revealed. In this chapter, we give an overview of the ubiquitin-proteasome system and the pathway proteins that have been examined in Arabidopsis to date. We review the methods required to identify and characterize the proteins that play a role in protein degradation or that are the target for proteasomal degradation.


Asunto(s)
Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estabilidad Proteica , Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Nat Commun ; 6: 6151, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25608221

RESUMEN

Brassinosteroids are plant steroid hormones that control many aspects of plant growth and development, and are perceived at the cell surface by the plasma membrane-localized receptor kinase BRI1. Here we show that BRI1 is post-translationally modified by K63 polyubiquitin chains in vivo. Using both artificial ubiquitination of BRI1 and generation of an ubiquitination-defective BRI1 mutant form, we demonstrate that ubiquitination promotes BRI1 internalization from the cell surface and is essential for its recognition at the trans-Golgi network/early endosomes (TGN/EE) for vacuolar targeting. Finally, we demonstrate that the control of BRI1 protein dynamics by ubiquitination is an important control mechanism for brassinosteroid responses in plants. Altogether, our results identify ubiquitination and K63-linked polyubiquitin chain formation as a dual targeting signal for BRI1 internalization and sorting along the endocytic pathway, and highlight its role in hormonally controlled plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Poliubiquitina/metabolismo , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Vacuolas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Endosomas/metabolismo , Endosomas/ultraestructura , Regulación de la Expresión Génica de las Plantas , Lisina/metabolismo , Microscopía Fluorescente/métodos , Mutación , Fosforilación , Plantas Modificadas Genéticamente , Poliubiquitina/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteolisis , Transducción de Señal , Ubiquitinación , Vacuolas/ultraestructura , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
4.
Curr Biol ; 21(22): 1918-23, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22079112

RESUMEN

In the Arabidopsis root meristem, polar auxin transport creates a transcriptional auxin response gradient that peaks at the stem cell niche and gradually decreases as stem cell daughters divide and differentiate [1-3]. The amplitude and extent of this gradient are essential for both stem cell maintenance and root meristem growth [4, 5]. To investigate why expression of some auxin-responsive genes, such as the essential root meristem growth regulator BREVIS RADIX (BRX) [6], deviates from this gradient, we combined experimental and computational approaches. We created cellular-level root meristem models that accurately reproduce distribution of nuclear auxin activity and allow dynamic modeling of regulatory processes to guide experimentation. Expression profiles deviating from the auxin gradient could only be modeled after intersection of auxin activity with the observed differential endocytosis pattern and positive autoregulatory feedback through plasma-membrane-to-nucleus transfer of BRX. Because BRX is required for expression of certain auxin response factor targets, our data suggest a cell-type-specific endocytosis-dependent input into transcriptional auxin perception. This input sustains expression of a subset of auxin-responsive genes across the root meristem's division and transition zones and is essential for meristem growth. Thus, the endocytosis pattern provides specific positional information to modulate auxin response.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Endocitosis , Ácidos Indolacéticos/metabolismo , Meristema/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Simulación por Computador , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Modelos Biológicos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
5.
Development ; 135(11): 2013-22, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18434413

RESUMEN

The COP9 signalosome (CSN) is required for the full activity of cullin-RING E3 ubiquitin ligases (CRLs) in eukaryotes. CSN exerts its function on CRLs by removing the ubiquitin-related NEDD8 conjugate from the cullin subunit of CRLs. CSN seems, thereby, to control CRL disassembly or CRL subunit stability. In Arabidopsis thaliana, loss of CSN function leads to constitutive photomorphogenic (cop) seedling development and a post-germination growth arrest. The underlying molecular cause of this growth arrest is currently unknown. Here, we show that Arabidopsis csn mutants are delayed in G2 phase progression. This cell cycle arrest correlates with the induction of the DNA damage response pathway and is suggestive of the activation of a DNA damage checkpoint. In support of this hypothesis, we detected gene conversion events in csn mutants that are indicative of DNA double-strand breaks. DNA damage is also apparent in mutants of the NEDD8 conjugation pathway and in mutants of the E3 ligase subunits CULLIN4, COP1 and DET1, which share phenotypes with csn mutants. In summary, our data suggest that Arabidopsis csn mutants undergo DNA damage, which might be the cause of the delay in G2 cell cycle progression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fase G2/fisiología , Inestabilidad Genómica , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9 , Ciclo Celular/genética , Ciclo Celular/fisiología , División Celular/genética , División Celular/fisiología , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Daño del ADN , Citometría de Flujo , Fase G2/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Immunoblotting , Etiquetado Corte-Fin in Situ , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptido Hidrolasas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
6.
Plant Cell ; 19(4): 1209-20, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17416730

RESUMEN

Gibberellic acid (GA) promotes seed germination, elongation growth, and flowering time in plants. GA responses are repressed by DELLA proteins, which contain an N-terminal DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. Mutations of or within the DELLA domain of DELLA repressors have been described for species including Arabidopsis thaliana, wheat (Triticum aestivum), maize (Zea mays), and barley (Hordeum vulgare), and we show that these mutations confer GA insensitivity when introduced into the Arabidopsis GA INSENSITIVE (GAI) DELLA repressor. We also demonstrate that Arabidopsis mutants lacking the three GA INSENSITIVE DWARF1 (GID1) GA receptor genes are GA insensitive with respect to GA-promoted growth responses, GA-promoted DELLA repressor degradation, and GA-regulated gene expression. Our genetic interaction studies indicate that GAI and its close homolog REPRESSOR OF ga1-3 are the major growth repressors in a GA receptor mutant background. We further demonstrate that the GA insensitivity of the GAI DELLA domain mutants is explained in all cases by the inability of the mutant proteins to interact with the GID1A GA receptor. Since we found that the GAI DELLA domain alone can mediate GA-dependent GID1A interactions, we propose that the DELLA domain functions as a receiver domain for activated GA receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión , ADN Bacteriano/genética , Flores/metabolismo , Genotipo , Germinación , Datos de Secuencia Molecular , Mutación , Zea mays/metabolismo , Zea mays/fisiología
7.
Plant Cell ; 19(4): 1163-78, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17435085

RESUMEN

E3 ubiquitin ligases (E3s) target proteins for degradation by the 26S proteasome. In SKP1/CDC53/F-box protein-type E3s, substrate specificity is conferred by the interchangeable F-box protein subunit. The vast majority of the 694 F-box proteins encoded by the Arabidopsis thaliana genome remain to be understood. We characterize the VIER F-BOX PROTEINE (VFB; German for FOUR F-BOX PROTEINS) genes from Arabidopsis that belong to subfamily C of the Arabidopsis F-box protein superfamily. This subfamily also includes the F-box proteins TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins and EIN3 BINDING F-BOX proteins, which regulate auxin and ethylene responses, respectively. We show that loss of VFB function causes delayed plant growth and reduced lateral root formation. We find that the expression of a number of auxin-responsive genes and the activity of DR5:beta-glucuronidase, a reporter for auxin response, are reduced in the vfb mutants. This finding correlates with an increase in the abundance of an AUXIN/INDOLE-3-ACETIC ACID repressor. However, we also find that auxin responses are not affected in the vfb mutants and that a representative VFB family member, VFB2, cannot functionally complement the tir1-1 mutant. We therefore exclude the possibility that VFBs are functional orthologs of TIR1/AFB proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas F-Box/genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Secuencia de Bases , Codón , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutagénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
Plant Cell ; 17(7): 1967-78, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15923347

RESUMEN

The COP9 signalosome (CSN) was originally identified based on the constitutively photomorphogenic/de-etiolated/fusca (cop/det/fus) mutants from Arabidopsis thaliana. CSN is evolutionary conserved, and its subunit 5 (CSN5) mediates the deconjugation of NEDD8 from the cullin subunit of E3 ubiquitin ligases (deneddylation). Here, we report on Arabidopsis mutants deficient in CSN5 function. We show that these mutants are phenotypically indistinguishable from the previously described cop/det/fus mutants of other CSN subunits. However, we also show that these mutants retain the CSN complex (lacking CSN5), and this finding is in contrast with the previously described CSN subunit mutants, which lack the CSN complex. We therefore conclude that loss of CSN5 as part of CSN is sufficient to cause the cop/det/fus mutant phenotype. Furthermore, we show that mutants defective in CSN5 as well as mutants defective in CSN are unable to deneddylate the Arabidopsis cullins AtCUL1, AtCUL3A, and AtCUL4. Because these are representative cullin subunits of the three cullin-containing E3 families present in Arabidopsis, we postulate that the cop/det/fus mutant phenotype may be the result of the defects caused by impaired CSN5-dependent deneddylation of cullin-containing E3s.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Fenotipo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Exp Bot ; 56(413): 799-806, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15668224

RESUMEN

In this study the further characterization of the Vicia faba leghaemoglobin promoter pVfLb29 is presented that was previously shown to be specifically active in the infected cells of root nodules and in arbuscule-containing cells of mycorrhizal roots. Using promoter studies in transgenic hairy roots of the Pisum sativum mutant RisNod24, disabled in the formation of functional arbuscules, VfLb29 promoter activity is assigned to later stages of arbuscule development. In order to narrow down the regions containing cis-acting elements of pVfLb29, the activity of five VfLb29 promoter deletions (-797/-31 to -175/-31 in relation to the start codon) fused to the gusAint coding region were tested in transgenic V. hirsuta hairy roots. The results specify a promoter region ranging from position -410 to -326 (85 bp) as necessary for gus expression in arbuscule-containing cells, whereas this segment is not involved in the nodule-specific activity. Sequence analysis of the pVfLb29 fragment -410/-326 (85 bp) revealed sequence motifs previously shown to be cis-acting elements of diverse promoters. To investigate the autonomous function of pVfLb29 regions for activation in arbuscule-containing cells, different regions of pVfLb29 from positions -410 to -198 were used to prepare chimeric promoter constructs for trans-activation studies. These fragments alone did not activate the mycorrhiza inactive promoter of the Vicia faba leghaemoglobin gene VfLb3, showing that the activation of pVfLb29 in arbuscule-containing cells is governed by a complex regulatory system that requires at least two modules located between position -410 and -31 of the VfLb29 gene.


Asunto(s)
Leghemoglobina/genética , Micorrizas/fisiología , Raíces de Plantas/fisiología , Regiones Promotoras Genéticas/fisiología , Secuencia de Bases , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Pisum sativum/genética , Pisum sativum/fisiología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Vicia/genética , Vicia faba/genética
10.
Plant Cell ; 17(9): 2473-85, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16024589

RESUMEN

In this study, we characterize the evolutionarily conserved TOUGH (TGH) protein as a novel regulator required for Arabidopsis thaliana development. We initially identified TGH as a yeast two-hybrid system interactor of the transcription initiation factor TATA-box binding protein 2. TGH has apparent orthologs in all eukaryotic model organisms with the exception of the budding yeast Saccharomyces cerevisiae. TGH contains domains with strong similarity to G-patch and SWAP domains, protein domains that are characteristic of RNA binding and processing proteins. Furthermore, TGH colocalizes with the splicing regulator SRp34 to subnuclear particles. We therefore propose that TGH plays a role in RNA binding or processing. Arabidopsis tgh mutants display developmental defects, including reduced plant height, polycotyly, and reduced vascularization. We found TGH expression to be increased in the amp1-1 mutant, which is similar to tgh mutants with respect to polycotyly and defects in vascular development. Interestingly, we observed a strong genetic interaction between TGH and AMP1 in that tgh-1 amp1-1 double mutants are extremely dwarfed and severely affected in plant development in general and vascular development in particular when compared with the single mutants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas Portadoras/metabolismo , Evolución Molecular , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Proteínas Portadoras/genética , Ácidos Indolacéticos/metabolismo , Datos de Secuencia Molecular , Hojas de la Planta/anatomía & histología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA