Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33028720

RESUMEN

Zika virus (ZIKV) envelope (E) protein is the major target of neutralizing antibodies in infected hosts and thus represents a candidate of interest for vaccine design. However, a major concern in the development of vaccines against ZIKV and the related dengue virus is the induction of cross-reactive poorly neutralizing antibodies that can cause antibody-dependent enhancement (ADE) of infection. This risk necessitates particular care in vaccine design. Specifically, the engineered immunogens should have their cross-reactive epitopes masked, and they should be optimized for eliciting virus-specific strongly neutralizing antibodies upon vaccination. Here, we developed ZIKV subunit- and virus-like particle (VLP)-based vaccines displaying E in its wild-type form or E locked in a covalently linked dimeric (cvD) conformation to enhance the exposure of E dimers to the immune system. Compared with their wild-type derivatives, cvD immunogens elicited antibodies with a higher capacity to neutralize virus infection in cultured cells. More importantly, these immunogens protected animals from lethal challenge with both the African and Asian lineages of ZIKV, impairing virus dissemination to brain and sexual organs. Moreover, the locked conformation of E reduced the exposure of epitopes recognized by cross-reactive antibodies and therefore showed a lower potential to induce ADE in vitro Our data demonstrated a higher efficacy of the VLPs in comparison with that of the soluble dimer and support VLP-cvD as a promising ZIKV vaccine.IMPORTANCE Infection with Zika virus (ZIKV) leads to the production by the host of antibodies that target the viral surface envelope (E) protein. A subset of these antibodies can inhibit virus infection, thus making E a suitable candidate for the development of vaccine against the virus. However, the anti-ZIKV E antibodies can cross-react with the E protein of the related dengue virus on account of the high level of similarity exhibited by the two viral proteins. Such a scenario may lead to severe dengue disease. Therefore, the design of a ZIKV vaccine requires particular care. Here, we tested two candidate vaccines containing a recombinant form of the ZIKV E protein that is forced in a covalently stable dimeric conformation (cvD). They were generated with an explicit aim to reduce the exposure of the cross-reactive epitopes. One vaccine is composed of a soluble form of the E protein (sE-cvD), the other is a more complex virus-like particle (VLP-cvD). We used the two candidate vaccines to immunize mice and later infected them with ZIKV. The animals produced a high level of inhibitory antibodies and were protected from the infection. The VLP-cvD was the most effective, and we believe it represents a promising ZIKV vaccine candidate.


Asunto(s)
Vacunas de Partículas Similares a Virus/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Protección Cruzada , Ratones , Conformación Proteica , Multimerización de Proteína , Vacunación , Proteínas del Envoltorio Viral/química , Virus Zika/clasificación
2.
Cell Death Dis ; 14(11): 725, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938546

RESUMEN

Mesothelioma is an aggressive cancer of the mesothelial layer associated with an extensive fibrotic response. The latter is in large part mediated by cancer-associated fibroblasts which mediate tumour progression and poor prognosis. However, understanding of the crosstalk between cancer cells and fibroblasts in this disease is mostly lacking. Here, using co-cultures of patient-derived mesothelioma cell lines and lung fibroblasts, we demonstrate that fibroblast activation is a self-propagated process producing a fibrotic extracellular matrix (ECM) and triggering drug resistance in mesothelioma cells. Following characterisation of mesothelioma cells/fibroblasts signalling crosstalk, we identify several FDA-approved targeted therapies as far more potent than standard-of-care Cisplatin/Pemetrexed in ECM-embedded co-culture spheroid models. In particular, the SRC family kinase inhibitor, Saracatinib, extends overall survival well beyond standard-of-care in a mesothelioma genetically-engineered mouse model. In short, we lay the foundation for the rational design of novel therapeutic strategies targeting mesothelioma/fibroblast communication for the treatment of mesothelioma patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Mesotelioma Maligno , Mesotelioma , Animales , Ratones , Humanos , Mesotelioma/tratamiento farmacológico , Mesotelioma/genética , Fibroblastos , Pulmón
3.
J Neural Transm (Vienna) ; 118(7): 987-95, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21373759

RESUMEN

Monoamine oxidase-A (MAO-A) has been associated with both depression and Alzheimer disease (AD). Recently, carriers of AD-related presenilin-1 (PS-1) alleles have been found to be at higher risk for developing clinical depression. We chose to examine whether PS-1 could influence MAO-A function in vitro. Overexpression of selected AD-related PS-1 variants (wildtype, Y115H, ΔEx9 and M146V) in mouse hippocampal HT-22 cells affects MAO-A catalytic activity in a variant-specific manner. The ability of the PS-1 substrate-competitor DAPT to induce MAO-A activity in cells expressing either PS-1 wildtype or PS-1(M146V) suggests the potential for a direct influence of PS-1 on MAO-A function. In support of this, we were able to co-immunoprecipitate MAO-A with FLAG-tagged PS-1 wildtype and M146V proteins. This potential for a direct protein-protein interaction between PS-1 and MAO-A is not specific for HT-22 cells as we were also able to co-immunoprecipitate MAO-A with FLAG-PS-1 variants in N2a mouse neuroblastoma cells and in HEK293 human embryonic kidney cells. Finally, we demonstrate that the two PS-1 variants reported to be associated with an increased incidence of clinical depression [e.g., A431E and L235V] both induce MAO-A activity in HT-22 cells. A direct influence of PS-1 variants on MAO-A function could provide an explanation for the changes in monoaminergic tone observed in several neurodegenerative processes including AD. The ability to induce MAO-A catalytic activity with a PS-1/γ-secretase inhibitor should also be considered when designing secretase inhibitor-based therapeutics.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Trastorno Depresivo/enzimología , Variación Genética , Monoaminooxidasa/metabolismo , Neuronas/enzimología , Presenilina-1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Línea Celular Transformada , Línea Celular Tumoral , Trastorno Depresivo/genética , Trastorno Depresivo/patología , Células HEK293 , Humanos , Ratones , Neuroblastoma/enzimología , Neuroblastoma/patología , Neuronas/citología , Presenilina-1/fisiología
4.
DNA Repair (Amst) ; 8(5): 664-71, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19264557

RESUMEN

Topical application of thymidine dinucleotides (pTpT) provides some protection against the effects of UV on the skin, however, many details of the protective mechanism have yet to be elucidated. We have used mice with an epidermis-specific knockout for the nucleotide excision repair gene, Ercc1, to investigate the mechanisms of protection. pTpT offered no protection against the pronounced UV-induced short-term erythema and skin thickening responses that are characteristic of DNA repair-deficient skin. It also had no effect on UV-induced apoptosis in Ercc1-deficient cultured keratinocytes. However, in these short-term experiments in both skin and keratinocyte culture pTpT did cause a slight reduction in proliferation. pTpT application during a chronic UV irradiation protocol provided some protection from UVB-induced skin carcinogenesis in epidermis-specific Ercc1 knockout mice. The median tumour free survival time was increased in the pTpT-treated group and treated animals had fewer tumours. In addition, pTpT-treated animals developed fewer large inwardly growing skin lesions than untreated animals. Furthermore, the proliferation response was reduced in chronically irradiated, non-lesional pTpT-treated skin. We conclude that cancer protection by pTpT in our mice is not modulated by an upregulation of DNA repair, as protection appears to be independent of a functional nucleotide excision repair pathway. We hypothesise instead that protection by pTpT is due to a reduction in epidermal proliferation.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/fisiología , Endonucleasas/fisiología , Neoplasias Inducidas por Radiación/prevención & control , Neoplasias Cutáneas/prevención & control , Timidina/administración & dosificación , Rayos Ultravioleta/efectos adversos , Animales , Apoptosis/efectos de la radiación , Western Blotting , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células Cultivadas , Daño del ADN , Células Epidérmicas , Epidermis/efectos de los fármacos , Epidermis/efectos de la radiación , Eritema/metabolismo , Eritema/patología , Eritema/prevención & control , Femenino , Técnicas para Inmunoenzimas , Integrasas/metabolismo , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Masculino , Ratones , Ratones Noqueados , Neoplasias Inducidas por Radiación/metabolismo , Neoplasias Inducidas por Radiación/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Tasa de Supervivencia , Irradiación Corporal Total
5.
Nat Genet ; 52(12): 1364-1372, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33230297

RESUMEN

Inappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Interferón Tipo I/biosíntesis , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U7/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Línea Celular , ADN/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Células HCT116 , Células HEK293 , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/inmunología , Humanos , Proteínas de la Membrana/metabolismo , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Nucleótidos Cíclicos/biosíntesis , Nucleotidiltransferasas/metabolismo
6.
Nat Commun ; 9(1): 2441, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934593

RESUMEN

Zika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV. ChAdOx1 prME ∆TM encoding prM and envelope without TM provides 100% protection, as well as long-lasting anti-envelope immune responses and no evidence of in vitro antibody-dependent enhancement to dengue virus. Deletion of prM and addition of TM reduces protective efficacy and yields lower anti-envelope responses. Our finding that immunity against ZIKV can be enhanced by modulating antigen membrane anchoring highlights important parameters in the design of viral vectored ZIKV vaccines to support further clinical assessments.


Asunto(s)
Antígenos Virales/genética , Diseño de Fármacos , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Adenoviridae/genética , Animales , Acrecentamiento Dependiente de Anticuerpo/inmunología , Antígenos Virales/inmunología , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Humanos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Pan troglodytes/virología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virus Zika/genética , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
7.
Mol Cell Biol ; 23(24): 9245-50, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14645534

RESUMEN

In mammals, the three classical ras genes encode four highly homologous proteins, N-Ras, H-Ras, and the isoforms K-Ras 4A and 4B. Previous studies have shown that K-ras is essential for mouse development and that while K-ras 4A and 4B are expressed during development, K-ras 4A expression is regulated temporally and spatially and occurs in adult kidney, intestine, stomach, and liver. In the present study, the pattern of K-ras 4A expression was examined in a wide range of wild-type adult mouse tissues, and gene targeting was used to generate K-ras 4A-deficient mice to examine its role in development. It was found that K-ras 4A is also expressed in uterus, lung, pancreas, salivary glands, seminal vesicles, bone marrow cells, and cecum, where it was the major K-Ras isoform expressed. Mating between K-ras(tmDelta4A/+) mice produced viable K-ras(tmDelta4A/tmDelta4A) offspring with the expected Mendelian ratios of inheritance, and these mice expressed the K-ras 4B splice variant only. K-ras(tmDelta4A/tmDelta4A) mice were fertile and showed no histopathological abnormalities on inbred (129/Ola) or crossbred (129/Ola x C57BL/6) genetic backgrounds. The results demonstrate that K-Ras 4A, like H- and N-Ras, is dispensable for normal mouse development, at least in the presence of functional K-Ras 4B.


Asunto(s)
Genes ras , Empalme Alternativo , Animales , Secuencia de Bases , ADN/genética , Femenino , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Isoformas de Proteínas/genética , Distribución Tisular
8.
Sci Rep ; 7: 46019, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378778

RESUMEN

De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/- mice, showing that the mutant protein is essentially non-functional.


Asunto(s)
Alelos , Muerte Súbita , Mutación/genética , Factor 1 de Elongación Peptídica/genética , Convulsiones/genética , Animales , Secuencia de Bases , Peso Corporal , Sistemas CRISPR-Cas/genética , Edición Génica , Regulación de la Expresión Génica , Genoma , Genotipo , Ratones , Degeneración Nerviosa/patología , Factor 1 de Elongación Peptídica/metabolismo , Médula Espinal/patología
9.
Artículo en Inglés | MEDLINE | ID: mdl-24949078

RESUMEN

Background. Massage therapy is a noninvasive treatment that many individuals with multiple sclerosis (MS) use to supplement their conventional treatment. Objective. We hypothesize that massage therapy will improve the leg function and overall quality of life (QoL) of MS patients. Design. A two-period (rest, massage) crossover design was used. Twenty-four individuals with MS ranging from 3.0 to 7.0 on the Expanded Disability Status Scale (EDSS) received Swedish massage treatments for four weeks. Exercise capacity and leg function as well as QoL were assessed using the Six-Minute Walk Test (6MWT) and the Hamburg Quality of Life in Multiple Sclerosis (HAQUAMS) instrument, respectively. Assessments were measured before and after a massage period and a rest period where no massages were employed. Results. The results displayed no significant changes in 6MWT distances or HAQUAMS scores. However, the participants perceived improvement in overall health as expressed in written comments. Conclusions. Massage is a safe, noninvasive treatment that may assist MS patients in managing the stress of their symptoms. Future studies with larger sample size and cortisol measures are warranted.

10.
PLoS One ; 9(12): e114117, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25436608

RESUMEN

Translation elongation is the stage of protein synthesis in which the translation factor eEF1A plays a pivotal role that is dependent on GTP exchange. In vertebrates, eEF1A can exist as two separately encoded tissue-specific isoforms, eEF1A1, which is almost ubiquitously expressed, and eEF1A2, which is confined to neurons and muscle. The GTP exchange factor for eEF1A1 is a complex called eEF1B made up of subunits eEF1Bα, eEF1Bδ and eEF1Bγ. Previous studies have cast doubt on the ability of eEF1B to interact with eEF1A2, suggesting that this isoform might use a different GTP exchange factor. We show that eEF1B subunits are all widely expressed to varying degrees in different cell lines and tissues, and at different stages of development. We show that ablation of any of the subunits in human cell lines has a small but significant impact on cell viability and cycling. Finally, we show that both eEF1A1 and eEF1A2 colocalise with all eEF1B subunits, in such close proximity that they are highly likely to be in a complex.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/análisis , Factor 1 de Elongación Peptídica/análisis , Animales , Línea Celular , Supervivencia Celular , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Ratones , Factor 1 de Elongación Peptídica/genética , Interferencia de ARN
11.
FEBS J ; 280(24): 6528-40, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24460877

RESUMEN

Translation elongation factor 1A2 (eEF1A2), uniquely among translation factors, is expressed specifically in neurons and muscle. eEF1A2-null mutant wasted mice develop an aggressive, early-onset form of neurodegeneration, but it is unknown whether the wasting results from denervation of the muscles, or whether the mice have a primary myopathy resulting from loss of translation activity in muscle. We set out to establish the relative contributions of loss of eEF1A2 in the different tissues to this postnatal lethal phenotype. We used tissue-specific transgenesis to show that correction of eEF1A2 levels in muscle fails to ameliorate the overt phenotypic abnormalities or time of death of wasted mice. Molecular markers of muscle atrophy such as Fbxo32 were dramatically upregulated at the RNA level in wasted mice, both in the presence and in the absence of muscle-specific expression of eEF1A2, but the degree of upregulation at the protein level was significantly lower in those wasted mice without transgene-derived expression of eEF1A2 in muscle. This provides the first in vivo confirmation that eEF1A2 plays an important role in translation. In spite of the inability of the nontransgenic wasted mice to upregulate key atrogenes at the protein level in response to denervation to the same degree as their transgenic counterparts, there were no measurable differences between transgenic and nontransgenic wasted mice in terms of weight loss, grip strength, or muscle pathology. This suggests that a compromised ability fully to execute the atrogene pathway in denervated muscle does not affect the process of muscle atrophy in the short term.


Asunto(s)
Atrofia Muscular/genética , Neuronas/patología , Extensión de la Cadena Peptídica de Translación/genética , Factor 1 de Elongación Peptídica/genética , Animales , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Musculares/biosíntesis , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Especificidad de Órganos , Factor 1 de Elongación Peptídica/metabolismo , Proteínas Ligasas SKP Cullina F-box/biosíntesis , Regulación hacia Arriba
12.
PLoS One ; 7(7): e41917, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848658

RESUMEN

Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype "wasted" (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3-4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2.


Asunto(s)
Envejecimiento/genética , Haploinsuficiencia , Músculos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factor 1 de Elongación Peptídica/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Cruzamiento , Regulación hacia Abajo , Femenino , Fuerza de la Mano/fisiología , Heterocigoto , Masculino , Ratones , Músculos/fisiología , Fenotipo , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA