Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(14): 7392-7408, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37351621

RESUMEN

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.


Asunto(s)
ADN Mitocondrial , G-Cuádruplex , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Replicación del ADN/genética
2.
J Am Chem Soc ; 146(10): 6926-6935, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38430200

RESUMEN

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.


Asunto(s)
ADN , G-Cuádruplex , Humanos , Ligandos , ADN/química , Oligonucleótidos
3.
Nucleic Acids Res ; 49(4): 2179-2191, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33533925

RESUMEN

Replication forks often stall at damaged DNA. To overcome these obstructions and complete the DNA duplication in a timely fashion, replication can be restarted downstream of the DNA lesion. In mammalian cells, this repriming of replication can be achieved through the activities of primase and polymerase PrimPol. PrimPol is stimulated in DNA synthesis through interaction with PolDIP2, however the exact mechanism of this PolDIP2-dependent stimulation is still unclear. Here, we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol's enhanced processivity. PolDIP2 increases primer-template and dNTP binding affinities of PrimPol, which concomitantly enhances its nucleotide incorporation efficiency. This stimulation is dependent on a unique arginine cluster in PolDIP2. Since the polymerase activity of PrimPol alone is very limited, this mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, might be critical for the in vivo function of PrimPol in tolerating DNA lesions at physiological nucleotide concentrations.


Asunto(s)
Arginina/química , ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , ADN/biosíntesis , Enzimas Multifuncionales/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Unión Proteica
4.
J Am Chem Soc ; 142(6): 2876-2888, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31990532

RESUMEN

The signal transducer and activator of transcription 3 (STAT3) protein is a master regulator of most key hallmarks and enablers of cancer, including cell proliferation and the response to DNA damage. G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures enriched at telomeres and oncogenes' promoters. In cancer cells, stabilization of G4 DNAs leads to replication stress and DNA damage accumulation and is therefore considered a promising target for oncotherapy. Here, we designed and synthesized novel quinazoline-based compounds that simultaneously and selectively affect these two well-recognized cancer targets, G4 DNA structures and the STAT3 protein. Using a combination of in vitro assays, NMR, and molecular dynamics simulations, we show that these small, uncharged compounds not only bind to the STAT3 protein but also stabilize G4 structures. In human cultured cells, the compounds inhibit phosphorylation-dependent activation of STAT3 without affecting the antiapoptotic factor STAT1 and cause increased formation of G4 structures, as revealed by the use of a G4 DNA-specific antibody. As a result, treated cells show slower DNA replication, DNA damage checkpoint activation, and an increased apoptotic rate. Importantly, cancer cells are more sensitive to these molecules compared to noncancerous cell lines. This is the first report of a promising class of compounds that not only targets the DNA damage cancer response machinery but also simultaneously inhibits the STAT3-induced cancer cell proliferation, demonstrating a novel approach in cancer therapy.


Asunto(s)
G-Cuádruplex , Neoplasias/patología , Quinazolinas/química , Factor de Transcripción STAT3/metabolismo , Muerte Celular , Humanos , Ligandos , Neoplasias/metabolismo
5.
Nucleic Acids Res ; 46(18): 9471-9483, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102370

RESUMEN

The role of Ribonuclease H1 (RNase H1) during primer removal and ligation at the mitochondrial origin of light-strand DNA synthesis (OriL) is a key, yet poorly understood, step in mitochondrial DNA maintenance. Here, we reconstitute the replication cycle of L-strand synthesis in vitro using recombinant mitochondrial proteins and model OriL substrates. The process begins with initiation of DNA replication at OriL and ends with primer removal and ligation. We find that RNase H1 partially removes the primer, leaving behind the last one to three ribonucleotides. These 5'-end ribonucleotides disturb ligation, a conclusion which is supported by analysis of RNase H1-deficient patient cells. A second nuclease is therefore required to remove the last ribonucleotides and we demonstrate that Flap endonuclease 1 (FEN1) can execute this function in vitro. Removal of RNA primers at OriL thus depends on a two-nuclease model, which in addition to RNase H1 requires FEN1 or a FEN1-like activity. These findings define the role of RNase H1 at OriL and help to explain the pathogenic consequences of disease causing mutations in RNase H1.


Asunto(s)
ADN Mitocondrial/genética , Endonucleasas de ADN Solapado/genética , Proteínas Mitocondriales/genética , Ribonucleasa H/genética , Replicación del ADN/genética , Humanos , Mitocondrias/genética , ARN , Proteínas Recombinantes/genética , Ribonucleótidos/genética
6.
Hum Mutat ; 39(3): 406-414, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29194833

RESUMEN

Mutations in COQ8B cause steroid-resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype-phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits.


Asunto(s)
Resistencia a Medicamentos/genética , Mutación/genética , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Proteínas Quinasas/genética , Esteroides/uso terapéutico , Adolescente , Adulto , Niño , Preescolar , Estabilidad de Enzimas , Prueba de Complementación Genética , Humanos , Lactante , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Polimorfismo Genético , Saccharomyces cerevisiae/metabolismo , Adulto Joven
7.
Biochim Biophys Acta Bioenerg ; 1859(4): 244-252, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29355485

RESUMEN

Cytochrome c oxidase (COX), complex IV of the mitochondrial respiratory chain, is comprised of 14 structural subunits, several prosthetic groups and metal cofactors, among which copper. Its biosynthesis involves a number of ancillary proteins, encoded by the COX-assembly genes that are required for the stabilization and membrane insertion of the nascent polypeptides, the synthesis of the prosthetic groups, and the delivery of the metal cofactors, in particular of copper. Recently, a modular model for COX assembly has been proposed, based on the sequential incorporation of different assembly modules formed by specific subunits. We have cloned and characterized the human homologue of yeast COX16. We show that human COX16 encodes a small mitochondrial transmembrane protein that faces the intermembrane space and is highly expressed in skeletal and cardiac muscle. Its knockdown in C. elegans produces COX deficiency, and its ablation in HEK293 cells impairs COX assembly. Interestingly, COX16 knockout cells retain significant COX activity, suggesting that the function of COX16 is partially redundant. Analysis of steady-state levels of COX subunits and of assembly intermediates by Blue-Native gels shows a pattern similar to that reported in cells lacking COX18, suggesting that COX16 is required for the formation of the COX2 subassembly module. Moreover, COX16 co-immunoprecipitates with COX2. Finally, we found that copper supplementation increases COX activity and restores normal steady state levels of COX subunits in COX16 knockout cells, indicating that, even in the absence of a canonical copper binding motif, COX16 could be involved in copper delivery to COX2.


Asunto(s)
Caenorhabditis elegans/enzimología , Coenzimas/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Cationes Bivalentes , Clonación Molecular , Transporte de Electrón/fisiología , Complejo IV de Transporte de Electrones/genética , Expresión Génica , Técnicas de Inactivación de Genes , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Transporte Iónico , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Músculo Esquelético/enzimología , Miocardio/enzimología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Hum Mol Genet ; 25(19): 4256-4265, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27493029

RESUMEN

COQ2 (p-hydroxybenzoate polyprenyl transferase) encodes the enzyme required for the second step of the final reaction sequence of Coenzyme Q10 (CoQ) biosynthesis. Its mutations represent a frequent cause of primary CoQ deficiency and have been associated with the widest clinical spectrum, ranging from fatal neonatal multisystemic disease to late-onset encephalopathy. However, the reasons of this variability are still unknown.We have characterized the structure of human COQ2, defined its subcellular localization and developed a yeast model to validate all the mutant alleles reported so far.Our findings show that the main functional transcript of COQ2 is shorter than what was previously reported and that its protein product localizes to mitochondria with the C-terminus facing the intermembrane space. Complementation experiments in yeast showed that the residual activity of the mutant proteins correlates with the clinical phenotypes observed in patients.We defined the structure of COQ2 with relevant implications for mutation screening in patients and demonstrated that, contrary to other COQ gene defects such as ADCK3, there is a correlation between COQ2 genotype and patient's phenotype.


Asunto(s)
Transferasas Alquil y Aril/genética , Ataxia/genética , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Proteínas Mutantes/genética , Ubiquinona/deficiencia , Transferasas Alquil y Aril/biosíntesis , Ataxia/patología , Regulación de la Expresión Génica , Genotipo , Humanos , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Debilidad Muscular/patología , Proteínas Mutantes/biosíntesis , Mutación , Saccharomyces cerevisiae/genética , Índice de Severidad de la Enfermedad , Ubiquinona/genética
9.
Biochim Biophys Acta ; 1841(11): 1628-38, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25152161

RESUMEN

Coq5 catalyzes the only C-methylation involved in the biosynthesis of coenzyme Q (Q or ubiquinone) in humans and yeast Saccharomyces cerevisiae. As one of eleven polypeptides required for Q production in yeast, Coq5 has also been shown to assemble with the multi-subunit complex termed the CoQ-synthome. In humans, mutations in several COQ genes cause primary Q deficiency, and a decrease in Q biosynthesis is associated with mitochondrial, cardiovascular, kidney and neurodegenerative diseases. In this study, we characterize the human COQ5 polypeptide and examine its complementation of yeast coq5 point and null mutants. We show that human COQ5 RNA is expressed in all tissues and that the COQ5 polypeptide is associated with the mitochondrial inner membrane on the matrix side. Previous work in yeast has shown that point mutations within or adjacent to conserved COQ5 methyltransferase motifs result in a loss of Coq5 function but not Coq5 steady state levels. Here, we show that stabilization of the CoQ-synthome within coq5 point mutants or by over-expression of COQ8 in coq5 null mutants permits the human COQ5 homolog to partially restore coq5 mutant growth on respiratory media and Q6 content. Immunoblotting against the human COQ5 polypeptide in isolated yeast mitochondria shows that the human Coq5 polypeptide migrates in two-dimensional blue-native/SDS-PAGE at the same high molecular mass as other yeast Coq proteins. The results presented suggest that human and Escherichia coli Coq5 homologs expressed in yeast retain C-methyltransferase activity but are capable of rescuing the coq5 yeast mutants only when the CoQ-synthome is assembled.

10.
Biochim Biophys Acta ; 1842(1): 1-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24140869

RESUMEN

Human COQ6 encodes a monooxygenase which is responsible for the C5-hydroxylation of the quinone ring of coenzyme Q (CoQ). Mutations in COQ6 cause primary CoQ deficiency, a condition responsive to oral CoQ10 supplementation. Treatment is however still problematic given the poor bioavailability of CoQ10. We employed S. cerevisiae lacking the orthologous gene to characterize the two different human COQ6 isoforms and the mutations found in patients. COQ6 isoform a can partially complement the defective yeast, while isoform b, which lacks part of the FAD-binding domain, is inactive but partially stable, and could have a regulatory/inhibitory function in CoQ10 biosynthesis. Most mutations identified in patients, including the frameshift Q461fs478X mutation, retain residual enzymatic activity, and all patients carry at least one hypomorphic allele, confirming that the complete block of CoQ biosynthesis is lethal. These mutants are also partially stable and allow the assembly of the CoQ biosynthetic complex. In fact treatment with two hydroxylated analogues of 4-hydroxybenzoic acid, namely, vanillic acid or 3-4-hydroxybenzoic acid, restored the respiratory growth of yeast Δcoq6 cells expressing the mutant huCOQ6-isoa proteins. These compounds, and particularly vanillic acid, could therefore represent an interesting therapeutic option for COQ6 patients.


Asunto(s)
Aminobenzoatos/farmacología , Hidroxibenzoatos/farmacología , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Ubiquinona/genética , Ácido Vanílico/farmacología , Secuencia de Aminoácidos , Ataxia/tratamiento farmacológico , Ataxia/enzimología , Ataxia/genética , Expresión Génica , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/enzimología , Debilidad Muscular/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/deficiencia , Ubiquinona/metabolismo
11.
J Inherit Metab Dis ; 38(1): 145-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25091424

RESUMEN

Coenzyme Q(10) is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ(10) deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ(10). It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ(10) deficiency can also be observed in patients with defects unrelated to CoQ(10) biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ(10). In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ(10) biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ(10) deficiency, and on the diagnostic strategies for these conditions.


Asunto(s)
Ataxia/diagnóstico , Ataxia/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Debilidad Muscular/diagnóstico , Debilidad Muscular/genética , Ubiquinona/deficiencia , Adenosina Trifosfato/química , Animales , Ataxia/fisiopatología , Enfermedades del Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Transporte de Electrón , Humanos , Ratones , Mitocondrias/metabolismo , Enfermedades Mitocondriales/fisiopatología , Debilidad Muscular/fisiopatología , Síndrome Nefrótico/metabolismo , Estrés Oxidativo , Fenotipo , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/genética
12.
J Med Chem ; 67(3): 2202-2219, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38241609

RESUMEN

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.


Asunto(s)
ADN , G-Cuádruplex , Ligandos , Electricidad Estática , ADN/metabolismo , Regiones Promotoras Genéticas
13.
Hum Mutat ; 34(1): 229-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23076989

RESUMEN

We studied eight kindreds with gyrate atrophy of choroid and retina (GA), a rare autosomal recessive disorder caused by mutations of the OAT gene, encoding the homoexameric enzyme ornithine-delta-aminotransferase. We identified four novel and five previously reported mutations. Missense alleles were expressed in yeast strain carrying a deletion of the orthologous of human OAT. All mutations markedly reduced enzymatic activity. However, the effect on the yeast growth was variable, suggesting that some mutations retain residual activity, below the threshold of the enzymatic assay. Mutant proteins were either highly unstable and rapidly degraded, or failed to assemble to form the active OAT hexamer. Where possible, fibroblast analysis confirmed these data. We found no correlation between the residual enzymatic activity and the age of onset, or the severity of symptoms. Moreover, the response to B6 was apparently not related to the specific mutations carried by patients. Overall these data suggest that other factors besides the specific OAT genotype modulate (GA) phenotype in patients. Finally, we found that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator known to increase mitochondrial biogenesis, markedly stimulates OAT expression, thus representing a possible treatment for a subset of GA patients with hypomorphic alleles.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Atrofia Girata/genética , Mutación Missense , Ornitina-Oxo-Ácido Transaminasa/genética , Secuencia de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Células Cultivadas , Análisis Mutacional de ADN , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Prueba de Complementación Genética , Genotipo , Atrofia Girata/enzimología , Atrofia Girata/patología , Células HEK293 , Humanos , Immunoblotting , Modelos Moleculares , Datos de Secuencia Molecular , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Fenotipo , Estructura Terciaria de Proteína , Ribonucleótidos/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Aminoácido
14.
J Inherit Metab Dis ; 36(1): 43-53, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22569581

RESUMEN

Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.


Asunto(s)
Arginino-ARNt Ligasa/genética , Mutación , Atrofias Olivopontocerebelosas/enzimología , Atrofias Olivopontocerebelosas/genética , Cerebelo/enzimología , Cerebelo/patología , Cerebelo/fisiología , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/sangre , Discapacidad Intelectual/líquido cefalorraquídeo , Discapacidad Intelectual/genética , Ácido Láctico/sangre , Ácido Láctico/líquido cefalorraquídeo , Síndrome de Lennox-Gastaut , Imagen por Resonancia Magnética/métodos , Masculino , Microcefalia/sangre , Microcefalia/líquido cefalorraquídeo , Microcefalia/genética , Mitocondrias/genética , Neuroimagen/métodos , Atrofias Olivopontocerebelosas/diagnóstico , Atrofias Olivopontocerebelosas/metabolismo , Trastornos Psicomotores/genética , Convulsiones/sangre , Convulsiones/líquido cefalorraquídeo , Convulsiones/genética , Espasmos Infantiles/sangre , Espasmos Infantiles/líquido cefalorraquídeo , Espasmos Infantiles/genética
15.
J Med Genet ; 49(3): 187-91, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22368301

RESUMEN

BACKGROUND: COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q(10) (CoQ(10)). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ(10) deficiency. METHODS: A complete molecular and biochemical characterisation of the patient's fibroblasts and of a yeast model were performed. RESULTS: The study found reduced COQ4 expression (48% of controls), CoQ(10) content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ(10) to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ(10.) Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ(10) biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ(10) supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. CONCLUSION: Mutations of COQ4 should be searched for in patients with CoQ(10) deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ(10) deficiency, as they could benefit from supplementation.


Asunto(s)
Anomalías Múltiples/genética , Haploinsuficiencia , Proteínas Mitocondriales/genética , Ubiquinona/análogos & derivados , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/enzimología , Proliferación Celular/efectos de los fármacos , Preescolar , Hibridación Genómica Comparativa , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Fibroblastos/enzimología , Fibroblastos/metabolismo , Células HeLa , Humanos , Masculino , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transcripción Genética , Ubiquinona/deficiencia , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
16.
Chem Sci ; 13(8): 2347-2354, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35310480

RESUMEN

G-quadruplex (G4) DNA structures are implicated in central biological processes and are considered promising therapeutic targets because of their links to human diseases such as cancer. However, functional details of how, when, and why G4 DNA structures form in vivo are largely missing leaving a knowledge gap that requires tailored chemical biology studies in relevant live-cell model systems. Towards this end, we developed a synthetic platform to generate complementary chemical probes centered around one of the most effective and selective G4 stabilizing compounds, Phen-DC3. We used a structure-based design and substantial synthetic devlopments to equip Phen-DC3 with an amine in a position that does not interfere with G4 interactions. We next used this reactive handle to conjugate a BODIPY fluorophore to Phen-DC3. This generated a fluorescent derivative with retained G4 selectivity, G4 stabilization, and cellular effect that revealed the localization and function of Phen-DC3 in human cells. To increase cellular uptake, a second chemical probe with a conjugated cell-penetrating peptide was prepared using the same amine-substituted Phen-DC3 derivative. The cell-penetrating peptide conjugation, while retaining G4 selectivity and stabilization, increased nuclear localization and cellular effects, showcasing the potential of this method to modulate and direct cellular uptake e.g. as delivery vehicles. The applied approach to generate multiple tailored biochemical tools based on the same core structure can thus be used to advance the studies of G4 biology to uncover molecular details and therapeutic approaches.

17.
J Biol Chem ; 284(42): 28926-34, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19703900

RESUMEN

Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASL(null) strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, "compound heterozygous" yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders.


Asunto(s)
Argininosuccinatoliasa/genética , Mutación Missense , Mutación , Alelos , Prueba de Complementación Genética , Vectores Genéticos , Genotipo , Haploidia , Heterocigoto , Humanos , Modelos Genéticos , Conformación Molecular , Fenotipo , Saccharomyces cerevisiae/metabolismo , Urea/metabolismo
18.
Am J Med Genet A ; 149A(11): 2464-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19839041

RESUMEN

Brachytelephalangic chondrodysplasia punctata (CDPX1) is an X-linked recessive disorder caused by mutations in the arylsulfatase E (ARSE) gene, characterized by the presence of stippled epiphyses on radiograms in infancy and early childhood. Other features include hypoplasia of the midface and of the nasal bone, short stature, brachytelephalangy, and ectopic calcifications. Patients display marked clinical variability and there is no clear genotype-phenotype correlation. We report on a 14-month-old boy who presented with respiratory stridor due to tracheal calcifications. He had mild midface hypoplasia and brachytelephalangy, but lacked other features of CDPX1, such as short stature and epiphyseal stippling. Analysis of ARSE detected a deletion involving exons 7-10. His maternal grandfather harbored the same defect but lacked any clinical manifestation. These findings underscore two important points. First, the absence of stippled epiphyses on radiograms should not be considered an exclusion criteria for ARSE mutation screening in patients with other features of the disease, especially after the neonatal period. Second, counseling to parents of affected children should be cautious because although the theoretical risk of inheriting the ARSE mutation is 50% for every male child of a carrier mother, it is not possible to determine whether he will develop features of CDPX1 and the eventual severity of symptoms. The actual risk of developing the disease is probably lower than 50%. Conversely, normal prenatal sonography does not rule out potentially severe complications such as tracheal stenosis.


Asunto(s)
Condrodisplasia Punctata/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Carácter Cuantitativo Heredable , Adulto , Arilsulfatasas/genética , Condrodisplasia Punctata/enzimología , Cromosomas Humanos Y/genética , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Seudogenes/genética , Radiografía Torácica , Tomografía Computarizada por Rayos X
19.
Biochem Biophys Res Commun ; 372(1): 35-9, 2008 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-18474229

RESUMEN

Defects in genes involved in coenzyme Q (CoQ) biosynthesis cause primary CoQ deficiency, a severe multisystem disorders presenting as progressive encephalomyopathy and nephropathy. The COQ4 gene encodes an essential factor for biosynthesis in Saccharomyces cerevisiae. We have identified and cloned its human ortholog, COQ4, which is located on chromosome 9q34.13, and is transcribed into a 795 base-pair open reading frame, encoding a 265 amino acid (aa) protein (Isoform 1) with a predicted N-terminal mitochondrial targeting sequence. It shares 39% identity and 55% similarity with the yeast protein. Coq4 protein has no known enzymatic function, but may be a core component of multisubunit complex required for CoQ biosynthesis. The human transcript is detected in Northern blots as a approximately 1.4 kb single band and is expressed ubiquitously, but at high levels in liver, lung, and pancreas. Transcription initiates at multiple sites, located 333-23 nucleotides upstream of the ATG. A second group of transcripts originating inside intron 1 of the gene encodes a 241 aa protein, which lacks the mitochondrial targeting sequence (isoform 2). Expression of GFP-fusion proteins in HeLa cells confirmed that only isoform 1 is targeted to mitochondria. The functional significance of the second isoform is unknown. Human COQ4 isoform 1, expressed from a multicopy plasmid, efficiently restores both growth in glycerol, and CoQ content in COQ4(null) yeast strains. Human COQ4 is an interesting candidate gene for patients with isolated CoQ(10) deficiency.


Asunto(s)
Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Ubiquinona/análogos & derivados , Secuencia de Aminoácidos , Northern Blotting , Cromosomas Humanos Par 9/genética , Clonación Molecular , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Isoenzimas/análisis , Isoenzimas/biosíntesis , Isoenzimas/genética , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Ubiquinona/análisis , Ubiquinona/biosíntesis , Ubiquinona/genética
20.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3629-3638, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30251682

RESUMEN

Gyrate atrophy (GA) is a rare recessive disorder characterized by progressive blindness, chorioretinal degeneration and systemic hyperornithinemia. GA is caused by point mutations in the gene encoding ornithine δ-aminotransferase (OAT), a tetrameric pyridoxal 5'-phosphate-dependent enzyme catalysing the transamination of l-ornithine and α-ketoglutarate to glutamic-γ-semialdehyde and l-glutamate in mitochondria. More than 50 OAT variants have been identified, but their molecular and cellular properties are mostly unknown. A subset of patients is responsive to pyridoxine administration, although the mechanisms underlying responsiveness have not been clarified. Herein, we studied the effects of the V332M mutation identified in pyridoxine-responsive patients. The Val332-to-Met substitution does not significantly affect the spectroscopic and kinetic properties of OAT, but during catalysis it makes the protein prone to convert into the apo-form, which undergoes unfolding and aggregation under physiological conditions. By using the CRISPR/Cas9 technology we generated a new cellular model of GA based on HEK293 cells knock-out for the OAT gene (HEK-OAT_KO). When overexpressed in HEK-OAT_KO cells, the V332M variant is present in an inactive apodimeric form, but partly shifts to the catalytically-competent holotetrameric form in the presence of exogenous PLP, thus explaining the responsiveness of these patients to pyridoxine administration. Overall, our data represent the first integrated molecular and cellular analysis of the effects of a pathogenic mutation in OAT. In addition, we validated a novel cellular model for the disease that could prove instrumental to define the molecular defect of other GA-causing variants, as well as their responsiveness to pyridoxine and other putative drugs.


Asunto(s)
Atrofia Girata/genética , Ornitina-Oxo-Ácido Transaminasa/genética , Agregación Patológica de Proteínas/genética , Fosfato de Piridoxal/metabolismo , Complejo Vitamínico B/farmacología , Sistemas CRISPR-Cas/genética , Coenzimas/metabolismo , Pruebas de Enzimas , Técnicas de Inactivación de Genes , Atrofia Girata/tratamiento farmacológico , Atrofia Girata/patología , Células HEK293 , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Mutación Puntual , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/patología , Piridoxina/farmacología , Piridoxina/uso terapéutico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resultado del Tratamiento , Complejo Vitamínico B/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA