RESUMEN
Vesicular stomatitis virus (VSV) is a member of the order Mononegavirales, which consists of viruses with a genome of nonsegmented negative-sense (NNS) RNA. Many insights into the molecular biology of NNS viruses were first made in VSV, which is often studied as a prototype for members of this order. Like other NNS viruses, the VSV RNA polymerase consists of a complex of the large protein (L) and phosphoprotein (P). Recent discoveries have produced a model in which the N-terminal disordered segment of P (PNTD) coordinates the C-terminal accessory domains to produce a "compacted" L conformation. Despite this advancement, the role of the three phosphorylation sites in PNTD has remained unknown. Using nuclear magnetic resonance spectroscopy to analyze the interactions between PNTD and the L protein C-terminal domain (LCTD), we demonstrated our ability to sensitively test for changes in the interface between the two proteins. This method showed that the binding site for PNTD on LCTD is longer than was previously appreciated. We demonstrated that phosphorylation of PNTD modulates its interaction with LCTD and used a minigenome reporter system to validate the functional significance of the PNTD-LCTD interaction. Using an electron microscopy approach, we showed that L bound to phosphorylated PNTD displays increased conformational heterogeneity in solution. Taken as a whole, our studies suggest a model in which phosphorylation of PNTD modulates its cofactor and conformational regulatory activities with L.IMPORTANCE Polymerase-cofactor interactions like those addressed in this study are absolute requirements for mononegavirus RNA synthesis. Despite cofactor phosphorylation being present in most of these interactions, what effect if any it has on this protein-protein interaction had not been addressed. Our study is the first to address the effects of phosphorylation on P during its interactions with L in residue-by-residue detail. As phosphorylation is the biologically relevant state of the cofactor, our demonstration of its effects on L conformation suggest that the structural picture of L during infection might be more complex than previously appreciated.
RESUMEN
Staphylococcus aureus is a common cause of infections in humans. The emergence of virulent, antibiotic-resistant strains of S. aureus is a significant public health concern. Most virulence and resistance factors in S. aureus are encoded by mobile genetic elements, and transduction by bacteriophages represents the main mechanism for horizontal gene transfer. The baseplate is a specialized structure at the tip of bacteriophage tails that plays key roles in host recognition, cell wall penetration, and DNA ejection. We have used high-resolution cryo-electron microscopy to determine the structure of the S. aureus bacteriophage 80α baseplate at 3.75 Å resolution, allowing atomic models to be built for most of the major tail and baseplate proteins, including two tail fibers, the receptor binding protein, and part of the tape measure protein. Our structure provides a structural basis for understanding host recognition, cell wall penetration and DNA ejection in viruses infecting Gram-positive bacteria. Comparison to other phages demonstrates the modular design of baseplate proteins, and the adaptations to the host that take place during the evolution of staphylococci and other pathogens.
Asunto(s)
Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Staphylococcus aureus/genética , Bacteriófagos/genética , Microscopía por Crioelectrón/métodos , Transferencia de Gen Horizontal/genética , Humanos , Modelos Moleculares , Unión Proteica/genética , Conformación Proteica , Staphylococcus aureus/ultraestructura , Staphylococcus aureus/virología , Virión/genéticaRESUMEN
During ÏX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ÏX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. IMPORTANCE: Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ÏX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity.
Asunto(s)
Bacteriófago phi X 174/química , Proteínas de la Cápside/química , Cápside/química , Regulación Viral de la Expresión Génica , Ensamble de Virus , Bacteriófago phi X 174/genética , Bacteriófago phi X 174/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Evolución Molecular Dirigida , Genes Letales , Aptitud Genética , Cinética , Modelos Moleculares , Mutación , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de ProteínaRESUMEN
Mumps virus (MuV) is a highly contagious pathogen, and despite extensive vaccination campaigns, outbreaks continue to occur worldwide. The virus has a negative-sense, single-stranded RNA genome that is encapsidated by the nucleocapsid protein (N) to form the nucleocapsid (NC). NC serves as the template for both transcription and replication. In this paper we solved an 18-Å-resolution structure of the authentic MuV NC using cryo-electron microscopy. We also observed the effects of phosphoprotein (P) binding on the MuV NC structure. The N-terminal domain of P (PNTD) has been shown to bind NC and appeared to induce uncoiling of the helical NC. Additionally, we solved a 25-Å-resolution structure of the authentic MuV NC bound with the C-terminal domain of P (PCTD). The location of the encapsidated viral genomic RNA was defined by modeling crystal structures of homologous negative strand RNA virus Ns in NC. Both the N-terminal and C-terminal domains of MuV P bind NC to participate in access to the genomic RNA by the viral RNA-dependent-RNA polymerase. These results provide critical insights on the structure-function of the MuV NC and the structural alterations that occur through its interactions with P.
Asunto(s)
Virus de la Parotiditis/química , Nucleocápside/química , Fosfoproteínas/química , Animales , Línea Celular , Cricetinae , Microscopía por Crioelectrón , Genoma Viral , Conformación Molecular , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Viral/química , ARN Polimerasa Dependiente del ARN/química , Virión/químicaRESUMEN
Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N-terminal extension that is not present in most Gram-negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N-terminal extension, which performs post-translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram-negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.
Asunto(s)
Proteasas de Cisteína/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Biología Computacional , Proteasas de Cisteína/genética , Escherichia coli/genética , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Homología de Secuencia de Aminoácido , Staphylococcus aureus/genéticaRESUMEN
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trials.
Asunto(s)
Proteínas 14-3-3/metabolismo , Exosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células Epiteliales/metabolismo , Humanos , Túbulos Renales Colectores/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Mutación , Neuronas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/líquido cefalorraquídeo , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Ratas , Ratas TransgénicasRESUMEN
Bacillus anthracis and other pathogenic Bacillus species form spores that are surrounded by an exosporium, a balloon-like layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence. The exosporium consists of a hair-like nap and a paracrystalline basal layer. The filaments of the nap are comprised of trimers of the collagen-like glycoprotein BclA, while the basal layer contains approximately 20 different proteins. One of these proteins, BxpB, forms tight complexes with BclA and is required for attachment of essentially all BclA filaments to the basal layer. Another basal layer protein, ExsB, is required for the stable attachment of the exosporium to the spore. To determine the organization of BclA and BxpB within the exosporium, we used cryo-electron microscopy, cryo-sectioning and crystallographic analysis of negatively stained exosporium fragments to compare wildtype spores and mutant spores lacking BclA, BxpB or ExsB (ΔbclA, ΔbxpB and ΔexsB spores, respectively). The trimeric BclA filaments are attached to basal layer surface protrusions that appear to be trimers of BxpB. The protrusions interact with a crystalline layer of hexagonal subunits formed by other basal layer proteins. Although ΔbxpB spores retain the hexagonal subunits, the basal layer is not organized with crystalline order and lacks basal layer protrusions and most BclA filaments, indicating a central role for BxpB in exosporium organization.
Asunto(s)
Bacillus anthracis/ultraestructura , Proteínas Bacterianas/ultraestructura , Glicoproteínas de Membrana/ultraestructura , Bacillus anthracis/fisiología , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Crioultramicrotomía , Análisis de Fourier , Técnicas de Inactivación de Genes , Glicoproteínas de Membrana/genética , Esporas Bacterianas/ultraestructura , Difracción de Rayos XRESUMEN
Food-derived exosome-like nanoparticles pass through the intestinal tract throughout our lives, but little is known about their impact or function. Here, as a proof of concept, we show that the cells targeted by grape exosome-like nanoparticles (GELNs) are intestinal stem cells whose responses underlie the GELN-mediated intestinal tissue remodeling and protection against dextran sulfate sodium (DSS)-induced colitis. This finding is further supported by the fact that coculturing of crypt or sorted Lgr5⺠stem cells with GELNs markedly improved organoid formation. GELN lipids play a role in induction of Lgr5⺠stem cells, and the liposome-like nanoparticles (LLNs) assembled with lipids from GELNs are required for in vivo targeting of intestinal stem cells. Blocking ß-catenin-mediated signaling pathways of GELN recipient cells attenuates the production of Lgr5⺠stem cells. Thus, GELNs not only modulate intestinal tissue renewal processes, but can participate in the remodeling of it in response to pathological triggers.
Asunto(s)
Colitis/inducido químicamente , Colitis/prevención & control , Sulfato de Dextran/toxicidad , Intestinos/citología , Nanopartículas/uso terapéutico , Células Madre/citología , Vitis/química , Animales , Masculino , RatonesRESUMEN
Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal itself, produced by overexpression, and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
Asunto(s)
Islas Genómicas , Fagos de Staphylococcus , Staphylococcus aureus , Humanos , Proteínas de la Cápside/química , Microscopía por Crioelectrón , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Fagos de Staphylococcus/genética , Factores de Virulencia/genética , Transducción Genética , Empaquetamiento del ADN , Conformación de Ácido NucleicoRESUMEN
Staphylococcus aureus is an important human pathogen, and the prevalence of antibiotic resistance is a major public health concern. The evolution of pathogenicity and resistance in S. aureus often involves acquisition of mobile genetic elements (MGEs). Bacteriophages play an especially important role, since transduction represents the main mechanism for horizontal gene transfer. S. aureus pathogenicity islands (SaPIs), including SaPI1, are MGEs that carry genes encoding virulence factors, and are mobilized at high frequency through interactions with specific "helper" bacteriophages, such as 80α, leading to packaging of the SaPI genomes into virions made from structural proteins supplied by the helper. Among these structural proteins is the portal protein, which forms a ring-like portal at a fivefold vertex of the capsid, through which the DNA is packaged during virion assembly and ejected upon infection of the host. We have used high-resolution cryo-electron microscopy to determine structures of the S. aureus bacteriophage 80α portal in solution and in situ in the empty and full SaPI1 virions, and show how the portal interacts with the capsid. These structures provide a basis for understanding portal and capsid assembly and the conformational changes that occur upon DNA packaging and ejection.
RESUMEN
Bacteriophage P4 is dependent on structural proteins supplied by a helper phage, P2, to assemble infectious virions. Bacteriophage P2 normally forms an icosahedral capsid with T=7 symmetry from the gpN capsid protein, the gpO scaffolding protein and the gpQ portal protein. In the presence of P4, however, the same structural proteins are assembled into a smaller capsid with T=4 symmetry. This size determination is effected by the P4-encoded protein Sid, which forms an external scaffold around the small P4 procapsids. Size responsiveness (sir) mutants in gpN fail to assemble small capsids even in the presence of Sid. We have produced large and small procapsids by co-expression of gpN with gpO and Sid, respectively, and applied cryo-electron microscopy and three-dimensional reconstruction methods to visualize these procapsids. gpN has an HK97-like fold and interacts with Sid in an exposed loop where the sir mutations are clustered. The T=7 lattice of P2 has dextro handedness, unlike the laevo lattices of other phages with this fold observed so far.
Asunto(s)
Bacteriófago P2/química , Bacteriófago P2/ultraestructura , Cápside/química , Cápside/diagnóstico por imagen , Myoviridae/química , Myoviridae/ultraestructura , Bacteriófago P2/genética , Microscopía por Crioelectrón , Modelos Biológicos , Mutación , Myoviridae/genética , Estructura Secundaria de Proteína , UltrasonografíaRESUMEN
Staphylococcus epidermidis is an opportunistic pathogen of the human skin, often associated with infections of implanted medical devices. Staphylococcal picoviruses are a group of strictly lytic, short-tailed bacteriophages with compact genomes that are attractive candidates for therapeutic use. Here, we report the structure of the complete virion of S. epidermidis-infecting phage Andhra, determined using high-resolution cryo-electron microscopy, allowing atomic modeling of 11 capsid and tail proteins. The capsid is a T = 4 icosahedron containing a unique stabilizing capsid lining protein. The tail includes 12 trimers of a unique receptor binding protein (RBP), a lytic protein that also serves to anchor the RBPs to the tail stem, and a hexameric tail knob that acts as a gatekeeper for DNA ejection. Using structure prediction with AlphaFold, we identified the two proteins that comprise the tail tip heterooctamer. Our findings elucidate critical features for virion assembly, host recognition, and penetration.
Asunto(s)
Especificidad del Huésped , Fagos de Staphylococcus , Humanos , Staphylococcus epidermidis , Microscopía por Crioelectrón , Cápside , Proteínas de la CápsideRESUMEN
Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.
Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/patogenicidad , Porinas/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Secuencias de Aminoácidos/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/toxicidad , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Humanos , Membrana Dobles de Lípidos/metabolismo , Microscopía Electrónica , Mutación , Mycobacterium tuberculosis/metabolismo , Porinas/genética , Multimerización de Proteína , Células THP-1 , Tuberculosis/microbiología , Tuberculosis/patología , Sistemas de Secreción Tipo VII/genéticaRESUMEN
Staphylococcus aureus pathogenicity islands (SaPIs) are molecular parasites that hijack helper phages for their transfer. SaPIbov5, the prototypical member of a family of cos type SaPIs, redirects the assembly of Ï12 helper capsids from prolate to isometric. This size and shape shift is dependent on the SaPIbov5-encoded protein Ccm, a homolog of the Ï12 capsid protein (CP). Using cryo-electron microscopy, we have determined structures of prolate Ï12 procapsids and isometric SaPIbov5 procapsids. Ï12 procapsids have icosahedral end caps with Tend = 4 architecture and a Tmid = 14 cylindrical midsection, whereas SaPIbov5 procapsids have T = 4 icosahedral architecture. We built atomic models for CP and Ccm, and show that Ccm occupies the pentameric capsomers in the isometric SaPIbov5 procapsids, suggesting that preferential incorporation of Ccm pentamers prevents the cylindrical midsection from forming. Our results highlight that pirate elements have evolved diverse mechanisms to suppress phage multiplication, including the acquisition of phage capsid protein homologs.
Asunto(s)
Staphylococcus/virología , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Islas Genómicas/genéticaRESUMEN
Most tailed bacteriophages with double-stranded DNA genomes code for a scaffolding protein, which is required for capsid assembly, but is removed during capsid maturation and DNA packaging. The gpO scaffolding protein of bacteriophage P2 also doubles as a maturation protease, while the scaffolding activity is confined to a 90 residue C-terminal "scaffolding" domain. Bacteriophage HK97 lacks a separate scaffolding protein; instead, an N-terminal "delta" domain in the capsid protein appears to serve an analogous role. We asked whether the C-terminal scaffolding domain of gpO could work as a delta domain when fused to the gpN capsid protein. Varying lengths of C-terminal sequences from gpO were fused to the N-terminus of gpN and expressed in E. coli. The presence of just the 41 C-terminal residues of gpO increased the fidelity of assembly and promoted the formation of closed shells, but the shells formed were predominantly small, 40 nm shells, compared to the normal, 55 nm P2 procapsid shells. Larger scaffolding domains fused to gpN caused the formation of shells of varying size and shape. The results suggest that while fusing the scaffolding protein to the capsid protein assists in shell closure, it also restricts the conformational variability of the capsid protein.
Asunto(s)
Bacteriófago P2/fisiología , Proteínas de la Cápside/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Bacteriófago P2/genética , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Escherichia coli/virología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genética , Virión/metabolismo , Virión/ultraestructuraRESUMEN
Bacteriophage 80α is a representative of a class of temperate phages that infect Staphylococcus aureus and other Gram-positive bacteria. Many of these phages carry genes encoding toxins and other virulence factors. This phage, 80α, is also involved in high-frequency mobilization of S. aureus pathogenicity islands (SaPIs), mobile genetic elements that carry virulence factor genes. Bacteriophage 80α encodes a minor capsid protein, gp44, between the genes for the portal protein and major capsid protein. Gp44 is essential for a productive infection by 80α but not for transduction of SaPIs or plasmids. We previously demonstrated that gp44 is an ejection protein that acts to promote progression to the lytic cycle upon infection and suggested that the protein might act as an anti-repressor of CI in the lytic-lysogenic switch. However, an 80α Δ44 mutant also exhibited a reduced rate of lysogeny. Here, we show that gp44 is a non-specific DNA binding protein with affinity for the blunt ends of linear DNA. Our data suggest a model in which gp44 promotes circularization of the genome after injection into the host cell, a key initial step both for lytic growth and for the establishment of lysogeny.
Asunto(s)
Fagos de Staphylococcus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Proteínas Virales/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Caudovirales/genética , ADN/genética , Proteínas de Unión al ADN/metabolismo , Islas Genómicas/genética , Secuencias Repetitivas Esparcidas , Lisogenia , Fagos de Staphylococcus/genética , Proteínas Virales/química , Proteínas Virales/genética , Factores de Virulencia/genéticaRESUMEN
P4 is a mobile genetic element (MGE) that can exist as a plasmid or integrated into its Escherichia coli host genome, but becomes packaged into phage particles by a helper bacteriophage, such as P2. P4 is the original example of what we have termed "molecular piracy", the process by which one MGE usurps the life cycle of another for its own propagation. The P2 helper provides most of the structural gene products for assembly of the P4 virion. However, when P4 is mobilized by P2, the resulting capsids are smaller than those normally formed by P2 alone. The P4-encoded protein responsible for this size change is called Sid, which forms an external scaffolding cage around the P4 procapsids. We have determined the high-resolution structure of P4 procapsids, allowing us to build an atomic model for Sid as well as the gpN capsid protein. Sixty copies of Sid form an intertwined dodecahedral cage around the T = 4 procapsid, making contact with only one out of the four symmetrically non-equivalent copies of gpN. Our structure provides a basis for understanding the sir mutants in gpN that prevent small capsid formation, as well as the nms "super-sid" mutations that counteract the effect of the sir mutations, and suggests a model for capsid size redirection by Sid.
Asunto(s)
Bacteriófagos/química , Proteínas de la Cápside/química , Cápside/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Virus Helper/química , Virus Helper/genética , Virus Helper/metabolismo , Mutación , Conformación Proteica , Virus Satélites/química , Virus Satélites/genética , Virus Satélites/metabolismoRESUMEN
BACKGROUND: Human seminal fluid contains small exosome-like vesicles called prostasomes. Prostasomes have been reported previously to play an important role in the process of fertilization by boosting survivability and motility of spermatozoa, in addition to modulating acrosomal reactivity. Prostasomes have also been reported to present with sizes varying from 50 to 500 nm and to have multilayered lipid membranes; however, the fine morphology of prostasomes has never been studied in detail. METHODS: Sucrose gradient-purified prostasomes were visualized by cryo-electron microscopy (EM). Protein composition was studied by trypsin in-gel digestion and liquid chromatography/mass spectrometry. RESULTS: Here we report for the first time the detailed structure of seminal prostasomes by cryo-EM. There are at least three distinct dominant structural types of vesicles present. In parallel with the structural analysis, we have carried out a detailed proteomic analysis of prostasomes, which led to the identification of 440 proteins. This is nearly triple the number of proteins identified to date for these unique particles and a number of the proteins identified previously were cross-validated in our study. CONCLUSION: From the data reported herein, we hypothesize that the structural heterogeneity of the exosome-like particles in human semen reflects their functional diversity. Our detailed proteomic analysis provided a list of candidate proteins for future structural and functional studies.