Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 60(14): 10686-10697, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34181854

RESUMEN

Three new sodium zinc antimonides Na11Zn2Sb5, Na4Zn9Sb9, and NaZn3Sb3 were synthesized utilizing sodium hydride NaH as a reactive sodium source. In comparison to the synthesis using sodium metal, salt-like NaH can be ball-milled, leading to the easy and uniform mixing of precursors in the desired stoichiometric ratios. Such comprehensive compositional control enables a fast screening of the Na-Zn-Sb system and identification of new compounds, followed by their preparation in bulk with high purity. Na11Zn2Sb5 crystallizes in the triclinic P1 space group (No. 2, Z = 2, a = 8.8739(6) Å, b = 10.6407(7) Å, c = 11.4282(8) Å, α = 103.453(2)°, ß = 96.997(2)°, γ = 107.517(2)°) and features polyanionic [Zn2Sb5]11- clusters with unusual 3-coordinated Zn atoms. Both Na4Zn9Sb9 (Z = 4, a = 28.4794(4) Å, b = 4.47189(5) Å, c = 17.2704(2) Å, ß = 98.3363(6)°) and NaZn3Sb3 (Z = 8, a = 32.1790(1) Å, b = 4.51549(1) Å, c = 9.64569(2) Å, ß = 98.4618(1)°) crystallize in the monoclinic C2/m space group (No. 12) and have complex new structure types. For both compounds, their frameworks are built from ZnSb4 distorted tetrahedra, which are linked via edge-, vertex-sharing, or both, while Na cations fill in the framework channels. Due to the complex structures, Na4Zn9Sb9 and NaZn3Sb3 compounds exhibit low thermal conductivities (0.97-1.26 W·m-1 K-1) at room temperature, positive Seebeck coefficients (19-32 µV/K) suggestive of holes as charge carriers, and semimetallic electrical resistivities (∼1.0-2.3 × 10-4 Ω·m). Na4Zn9Sb9 and NaZn3Sb3 decompose into the equiatomic NaZnSb above ∼800 K, as determined by in situ synchrotron powder X-ray diffraction. The discovery of multiple ternary compounds highlights the importance of judicious choice of the synthetic method.

2.
Acc Chem Res ; 51(1): 31-39, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29256588

RESUMEN

In this Account, we focused on a unique class of inclusion compounds, intermetallic clathrates, which exist in a variety of structures and exhibit diverse physical properties. These compounds combine covalent tetrahedral frameworks with rattling guest atoms situated inside their framework cages. Tetrels, the group 14 elements, are the basis for conventional clathrates because they fulfill the bonding requirement of four electrons per framework atom. In analogy to the replacement of Ge with GaAs in semiconductors, we focused on unconventional tetrel-free clathrates with frameworks composed of phosphorus and late transition metals. Compared to tetrels, these elements exhibit greater flexibility in their local coordinations and bonding. Tetrel elements cannot tolerate high deviations from regular tetrahedral coordinations. Thus, they exile a number of theoretically predicted framework topologies that are composed of a single type of polyhedral cage with square faces, such as the truncated octahedron. Unconventional clathrates are capable of stabilizing both envisaged and unique, unforeseen topologies. Clathrate structures with guest atoms held inside their cages by weak electrostatic interactions are predicted to be efficient thermoelectrics due to their low thermal conductivities. Unconventional clathrates may exhibit ultralow thermal conductivities, below 1 W m-1 K-1, without a need for heavy elements in their frameworks. The different chemical natures of transition metals and phosphorus led to their segregation over different framework positions, fulfilling the elements' specific local coordination and bonding requirements. This resulted in the formation of short- and long-range ordered superstructures with complex phonon dispersions and ultralow thermal conductivities. Aliovalent substitutions are commonly used to tune charge carrier concentrations in materials science. They are often performed under the "doping" assumption that substitutions with neighboring elements in the periodic system should not affect the parent structure but only adjust the charge carrier concentrations. This is not the case for unconventional clathrates. We investigated the tunability of the prototype Ba8Cu16P30 clathrate by the aliovalent substitution of Cu with either Zn or Ge. These substitutions resulted in significant alterations of the local chemical bonding and led to the rearrangement of the whole crystal structure. Remarkable thermoelectric properties were achieved for the substituted unconventional clathrates, exhibiting an overall order of magnitude increase in the thermoelectric performance. Aliovalent substitution allowed us to vary the charge carrier concentration in one structure type within the limits of the structure's stability. Exceeding these limits in the Ba-Cu-Zn-P system resulted in a transition from the covalent 2c-2e bonding found in conventional clathrates to the multicenter bonding common for metal-rich intermetallic compounds. This caused the complete rearrangement of the crystal structure into a new unique clathrate where a majority of the framework atoms are five- and six-coordinated, and all metal atoms are joined in Cu-Zn dumbbells. Our work shows that unconventional clathrates exhibit diverse crystal structures and unique chemical bonding, which result in tunable transport properties. While they are similar to their tetrel counterparts in some ways, they are very different in others. Specifically, the high thermal and chemical stabilities and low thermal conductivities of unconventional clathrates make them promising bases for further development of thermoelectric materials.

3.
Inorg Chem ; 58(8): 4997-5005, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30945535

RESUMEN

Cs yM xSi1- xAs2 (M = Cu, Zn, or Ga; y = 0.15-0.19; x depends on M) represents a new group of pseudo-two-dimensional compounds that allow property tuning with various metal substituents without alteration of the main Si-As two-dimensional framework. Their crystal structure is built from M xSi1- xAs2 layers separated by disordered chains of Cs cations. These compounds are synthesized using a CsCl flux as a source of Cs, circumventing the need for an expensive and air-sensitive Cs metal reagent. M-Si substitution is required to compensate for the excess electrons donated by Cs cations. Alternatively, the charge compensation can be achieved by the formation of As vacancies. Resistivity measurements confirm the electron-balanced nature of the compounds that exhibit semiconducting behavior with small bandgaps.

4.
Angew Chem Int Ed Engl ; 56(9): 2418-2422, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28097775

RESUMEN

A new clathrate type has been discovered in the Ba/Cu/Zn/P system. The crystal structure of the Ba8 M24 P28+δ (M=Cu/Zn) clathrate is composed of the pentagonal dodecahedra common to clathrates along with a unique 22-vertex polyhedron with two hexagonal faces capped by additional partially occupied phosphorus sites. This is the first example of a clathrate compound where the framework atoms are not in tetrahedral or trigonal-pyramidal coordination. In Ba8 M24 P28+δ a majority of the framework atoms are five- and six-coordinated, a feature more common to electron-rich intermetallics. The crystal structure of this new clathrate was determined by a combination of X-ray and neutron diffraction and was confirmed with solid-state 31 P NMR spectroscopy. Based on chemical bonding analysis, the driving force for the formation of this new clathrate is the excess of electrons generated by a high concentration of Zn atoms in the framework. The rattling of guest atoms in the large cages results in a very low thermal conductivity, a unique feature of the clathrate family of compounds.

5.
Inorg Chem ; 54(17): 8608-16, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26270202

RESUMEN

Synthesis, crystal structures, and chemical bonding are reported for four binary phosphides with different degrees of phosphorus oligomerization, ranging from isolated P atoms to infinite phosphorus chains. Ba3P2 = Ba4P(2.67)□(0.33) (□ = vacancy) crystallizes in the anti-Th3P4 structure type with the cubic space group I4̅3d (no. 220), Z = 6, a = 9.7520(7) Å. In the Ba3P2 crystal structure, isolated P(3-) anions form distorted octahedra around the Ba(2+) cations. ß-Ba5P4 crystallizes in the Eu5As4 structure type with the orthorhombic space group Cmce (no. 64), Z = 4, a = 16.521(2) Å, b = 8.3422(9) Å, c = 8.4216(9) Å. In the crystal structure of ß-Ba5P4, one-half of the phosphorus atoms are condensed into P2(4-) dumbbells. SrP2 and BaP2 are isostructural and crystallize in the monoclinic space group P21/c (no. 14), Z = 6, a = 6.120(2)/6.368(1) Å, b = 11.818(3)/12.133(2) Å, c = 7.441(2)/7.687(2) Å, ß = 126.681(4)/126.766(2)° for SrP2/BaP2. In the crystal structures of SrP2 and BaP2, all phosphorus atoms are condensed into ∞(1)P(1-) cis-trans helical chains. Electronic structure calculations, chemical bonding analysis via the recently developed solid-state adaptive natural density partitioning (SSAdNDP) method, and UV-vis spectroscopy reveal that SrP2 and BaP2 are electron-balanced semiconductors.

6.
Chemistry ; 20(34): 10829-37, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24848876

RESUMEN

A polyphosphide, mP-BaP3, with a unique two-dimensional phosphorus layer has been discovered and characterized. It crystallizes in the monoclinic space group P21/c with unit-cell parameters a=6.486(1), b=7.710(1), c=8.172(2) Å; ß=104.72(3)°; Z=4. Its phosphorus polyanion can be derived from the strong elongation of 2/3 of the P-P bonds present in the layers of black phosphorus. The unit-cell volume of the mP-BaP3 phase is 1.4% larger than the volume of another polymorph, mS-BaP3, reported more than 40 years ago. The latter phase features the presence of one-dimensional phosphorus chains separated by Ba atoms. The differences in the structures of the phosphorus fragments in both polymorphs of barium triphosphide result in large differences in both the thermal stability of these materials as well as in their properties as evidenced by DSC, (31)P solid-state MAS NMR, UV/Vis, and surface photovoltage spectroscopies, alongside quantum-chemical calculations.

7.
J Am Chem Soc ; 135(33): 12313-23, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23862668

RESUMEN

A novel clathrate phase, Ba8Au16P30, was synthesized from its elements. High-resolution powder X-ray diffraction and transmission electron microscopy were used to establish the crystal structure of the new compound. Ba8Au16P30 crystallizes in an orthorhombic superstructure of clathrate-I featuring a complete separation of gold and phosphorus atoms over different crystallographic positions, similar to the Cu-containing analogue, Ba8Cu16P30. Barium cations are trapped inside the large polyhedral cages of the gold-phosphorus tetrahedral framework. X-ray diffraction indicated that one out of 15 crystallographically independent phosphorus atoms appears to be three-coordinate. Probing the local structure and chemical bonding of phosphorus atoms with (31)P solid-state NMR spectroscopy confirmed the three-coordinate nature of one of the phosphorus atomic positions. High-resolution high-angle annular dark-field scanning transmission electron microscopy indicated that the clathrate Ba8Au16P30 is well-ordered on the atomic scale, although numerous twinning and intergrowth defects as well as antiphase boundaries were detected. The presence of such defects results in the pseudo-body-centered-cubic diffraction patterns observed in single-crystal X-ray diffraction experiments. NMR and resistivity characterization of Ba8Au16P30 indicated paramagnetic metallic properties with a room-temperature resistivity of 1.7 mΩ cm. Ba8Au16P30 exhibits a low total thermal conductivity (0.62 W m(-1) K(-1)) and an unprecedentedly low lattice thermal conductivity (0.18 W m(-1) K(-1)) at room temperature. The values of the thermal conductivity for Ba8Au16P30 are significantly lower than the typical values reported for solid crystalline compounds. We attribute such low thermal conductivity values to the presence of a large number of heavy atoms (Au) in the framework and the formation of multiple twinning interfaces and antiphase defects, which are effective scatterers of heat-carrying phonons.

8.
Inorg Chem ; 52(12): 7061-7, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23734787

RESUMEN

Barium gold polyphosphide BaAu2P4 was synthesized from elements and structurally characterized by single crystal X-ray diffraction. BaAu2P4 crystallizes in a new structure type, in the orthorhombic space group Fddd (No. 70) with a = 6.517(1) Å, b = 8.867(2) Å, c = 21.844(5) Å. The crystal structure of BaAu2P4 consists of Au­P layers separated by layers of Ba atoms. Each Au­P layer is composed of infinite ∞(1)(P­) chains of unique topology linked together by almost linearly coordinated Au atoms. According to Zintl­Klemm formalism, this compound is charge balanced assuming closed shell d10 configuration for Au: Ba2+(Au+)2(P­)4. Magnetic and solid state NMR measurements together with quantum-chemical calculations reveal diamagnetic and semiconducting behavior for the investigated polyphosphide, which is as expected for the charged balanced Zintl phase. Electron localization function and crystal orbital Hamilton population analyses reveal strong P­P and Au­P bonding and almost nonbonding Au­Au interactions in BaAu2P4.

9.
Sci Adv ; 6(2): eaay8361, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31950087

RESUMEN

Carbon-based frameworks composed of sp3 bonding represent a class of extremely lightweight strong materials, but only diamond and a handful of other compounds exist despite numerous predictions. Thus, there remains a large gap between the number of plausible structures predicted and those synthesized. We used a chemical design principle based on boron substitution to predict and synthesize a three-dimensional carbon-boron framework in a host/guest clathrate structure. The clathrate, with composition 2Sr@B6C6, exhibits the cubic bipartite sodalite structure (type VII clathrate) composed of sp3-bonded truncated octahedral C12B12 host cages that trap Sr2+ guest cations. The clathrate not only maintains the robust nature of diamond-like sp3 bonding but also offers potential for a broad range of compounds with tunable properties through substitution of guest atoms within the cages.

10.
Materials (Basel) ; 12(2)2019 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-30642116

RESUMEN

The synthesis, structural characterization, and optical properties of the binary Zintl phases of α-EuP3, ß-EuP3, EuP2, and α-K4P6 are reported in this study. These crystal structures demonstrate the versatility of P fragments with dimensionality varying from 0D (P6 rings in α-K4P6) to 1D chains (EuP2) to 2D layers (both EuP3). EuP2 is isostructural to previously reported SrP2 and BaP2 compounds. The thermal stabilities of the EuP2 and both EuP3 phases were determined using differential scanning calorimetry (DSC), with melting temperatures of 1086 K for the diphosphide and 1143 K for the triphosphides. Diffuse reflectance spectroscopy indicated that EuP2 is an indirect semiconductor with a direct bandgap of 1.12(5) eV and a smaller indirect one, less than 1 eV. Both EuP3 compounds had bandgaps smaller than 1 eV.

11.
Chem Sci ; 8(12): 8030-8038, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29568451

RESUMEN

A new type-I clathrate, Ba8Cu14Ge6P26, was synthesized by solid-state methods as a polycrystalline powder and grown as a cm-sized single crystal via the vertical Bridgman method. Single-crystal and powder X-ray diffraction show that Ba8Cu14Ge6P26 crystallizes in the cubic space group Pm3n (no. 223). Ba8Cu14Ge6P26 is the first representative of anionic clathrates whose framework is composed of three atom types of very different chemical natures: a transition metal, tetrel element, and pnicogen. Uniform distribution of the Cu, Ge, and P atoms over the framework sites and the absence of any superstructural or local ordering in Ba8Cu14Ge6P26 were confirmed by synchrotron X-ray diffraction, electron diffraction and high-angle annular dark field scanning transmission electron microscopy, and neutron and X-ray pair distribution function analyses. Characterization of the transport properties demonstrate that Ba8Cu14Ge6P26 is a p-type semiconductor with an intrinsically low thermal conductivity of 0.72 W m-1 K-1 at 812 K. The thermoelectric figure of merit, ZT, for a slice of the Bridgman-grown crystal of Ba8Cu14Ge6P26 approaches 0.63 at 812 K due to a high power factor of 5.62 µW cm-1 K-2. The thermoelectric efficiency of Ba8Cu14Ge6P26 is on par with the best optimized p-type Ge-based clathrates and outperforms the majority of clathrates in the 700-850 K temperature region, including all tetrel-free clathrates. Ba8Cu14Ge6P26 expands clathrate chemistry by bridging conventional tetrel-based and tetrel-free clathrates. Advanced transport properties, in combination with earth-abundant framework elements and congruent melting make Ba8Cu14Ge6P26 a strong candidate as a novel and efficient thermoelectric material.

12.
Materials (Basel) ; 9(8)2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-28773814

RESUMEN

The high pressure properties of the novel tetrel-free clathrate, Ba8Cu13.1Zn3.3P29.6, were investigated using synchrotron powder X-ray diffraction. The pressure was applied using a diamond anvil cell. No structural transitions or decomposition were detected in the studied pressure range of 0.1-7 GPa. The calculated bulk modulus for Ba8Cu13.1Zn3.3P29.6 using a third-order Birch-Murnaghan equation of state is 65(6) GPa at 300 K. This bulk modulus is comparable to the bulk moduli of Ge- and Sn-based clathrates, like A8Ga16Ge30 (A = Sr, Ba) and Sn19.3Cu4.7P22I8, but lower than those for the transition metal-containing silicon-based clathrates, Ba8TxSi46-x, T = Ni, Cu; 3 ≤ x ≤ 5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA