Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Magn Reson ; 24(1): 59, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36372884

RESUMEN

BACKGROUND: Four-dimensional flow cardiovascular magnetic resonance imaging (4D flow CMR) allows comprehensive assessment of pulmonary artery (PA) flow dynamics. Few studies have characterized longitudinal changes in pulmonary flow dynamics and right ventricular (RV) recovery following a pulmonary endarterectomy (PEA) for patients with chronic thromboembolic pulmonary hypertension (CTEPH). This can provide novel insights of RV and PA dynamics during recovery. We investigated the longitudinal trajectory of 4D flow metrics following a PEA including velocity, vorticity, helicity, and PA vessel wall stiffness. METHODS: Twenty patients with CTEPH underwent pre-PEA and > 6 months post-PEA CMR imaging including 4D flow CMR; right heart catheter measurements were performed in 18 of these patients. We developed a semi-automated pipeline to extract integrated 4D flow-derived main, left, and right PA (MPA, LPA, RPA) volumes, velocity flow profiles, and secondary flow profiles. We focused on secondary flow metrics of vorticity, volume fraction of positive helicity (clockwise rotation), and the helical flow index (HFI) that measures helicity intensity. RESULTS: Mean PA pressures (mPAP), total pulmonary resistance (TPR), and normalized RV end-systolic volume (RVESV) decreased significantly post-PEA (P < 0.002). 4D flow-derived PA volumes decreased (P < 0.001) and stiffness, velocity, and vorticity increased (P < 0.01) post-PEA. Longitudinal improvements from pre- to post-PEA in mPAP were associated with longitudinal decreases in MPA area (r = 0.68, P = 0.002). Longitudinal improvements in TPR were associated with longitudinal increases in the maximum RPA HFI (r=-0.85, P < 0.001). Longitudinal improvements in RVESV were associated with longitudinal decreases in MPA fraction of positive helicity (r = 0.75, P = 0.003) and minimum MPA HFI (r=-0.72, P = 0.005). CONCLUSION: We developed a semi-automated pipeline for analyzing 4D flow metrics of vessel stiffness and flow profiles. PEA was associated with changes in 4D flow metrics of PA flow profiles and vessel stiffness. Longitudinal analysis revealed that PA helicity was associated with pulmonary remodeling and RV reverse remodeling following a PEA.


Asunto(s)
Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/cirugía , Embolia Pulmonar/complicaciones , Embolia Pulmonar/diagnóstico por imagen , Embolia Pulmonar/cirugía , Valor Predictivo de las Pruebas , Endarterectomía/métodos , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/cirugía , Imagen por Resonancia Magnética , Remodelación Ventricular , Espectroscopía de Resonancia Magnética , Función Ventricular Derecha
2.
Nat Cardiovasc Res ; 1(8): 775-790, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37305211

RESUMEN

Collateral arteries bridge opposing artery branches, forming a natural bypass that can deliver blood flow downstream of an occlusion. Inducing coronary collateral arteries could treat cardiac ischemia, but more knowledge on their developmental mechanisms and functional capabilities is required. Here we used whole-organ imaging and three-dimensional computational fluid dynamics modeling to define spatial architecture and predict blood flow through collaterals in neonate and adult mouse hearts. Neonate collaterals were more numerous, larger in diameter and more effective at restoring blood flow. Decreased blood flow restoration in adults arose because during postnatal growth coronary arteries expanded by adding branches rather than increasing diameters, altering pressure distributions. In humans, adult hearts with total coronary occlusions averaged 2 large collaterals, with predicted moderate function, while normal fetal hearts showed over 40 collaterals, likely too small to be functionally relevant. Thus, we quantify the functional impact of collateral arteries during heart regeneration and repair-a critical step toward realizing their therapeutic potential.

3.
Biomech Model Mechanobiol ; 20(6): 2471-2489, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34585299

RESUMEN

Untreated ventricular septal defects (VSDs) can lead to pulmonary arterial hypertension (PAH) characterized by elevated pulmonary artery (PA) pressure and vascular remodeling, known as PAH associated with congenital heart disease (PAH-CHD). Though previous studies have investigated hemodynamic effects on vascular mechanobiology in late-stage PAH, hemodynamics leading to PAH-CHD initiation have not been fully quantified. We hypothesize that abnormal hemodynamics from left-to-right shunting in early stage VSDs affects PA biomechanical properties leading to PAH initiation. To model PA hemodynamics in healthy, small, moderate, and large VSD conditions prior to the onset of vascular remodeling, computational fluid dynamics simulations were performed using a 3D finite element model of a healthy 1-year-old's proximal PAs and a body-surface-area-scaled 0D distal PA tree. VSD conditions were modeled with increased pulmonary blood flow to represent degrees of left-to-right shunting. In the proximal PAs, pressure, flow, strain, and wall shear stress (WSS) increased with increasing VSD size; oscillatory shear index decreased with increasing VSD size in the larger PA vessels. WSS was higher in smaller diameter vessels and increased with VSD size, with the large VSD condition exhibiting WSS >100 dyn/cm[Formula: see text], well above values typically used to study dysfunctional mechanotransduction pathways in PAH. This study is the first to estimate hemodynamic and biomechanical metrics in the entire pediatric PA tree with VSD severity at the stage leading to PAH initiation and has implications for future studies assessing effects of abnormal mechanical stimuli on endothelial cells and vascular wall mechanics that occur during PAH-CHD initiation and progression.


Asunto(s)
Simulación por Computador , Defectos del Tabique Interventricular/fisiopatología , Hemodinámica/fisiología , Arteria Pulmonar/fisiopatología , Fenómenos Biomecánicos , Humanos , Lactante , Masculino , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA