Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38212287

RESUMEN

This study aimed to explore the topographic features of thalamic subregions, functional connectomes and hierarchical organizations between thalamus and cortex in poststroke fatigue patients. We consecutively recruited 121 acute ischemic stroke patients (mean age: 59 years) and 46 healthy controls matched for age, sex, and educational level. The mean age was 59 years (range 19-80) and 38% of acute stroke patients were females. Resting-state functional and structural magnetic resonance imaging were conducted on all participants. The fatigue symptoms were measured using the Fatigue Severity Scale. The thalamic functional subdivisions corresponding to the canonical functional network were defined using the winner-take-all parcellation method. Thalamic functional gradients were derived using the diffusion embedding analysis. The results suggested abnormal functional connectivity of thalamic subregions primarily located in the temporal lobe, posterior cingulate gyrus, parietal lobe, and precuneus. The thalamus showed a gradual increase from the medial to the lateral in all groups, but the right thalamus shifted more laterally in poststroke fatigue patients than in non- poststroke fatigue patients. Poststroke fatigue patients also had higher gradient scores in the somatomotor network and the right medial prefrontal and premotor thalamic regions, but lower values in the right lateral prefrontal thalamus. The findings suggested that poststroke fatigue patients had altered functional connectivity and thalamocortical hierarchical organizations, providing new insights into the neural mechanisms of the thalamus.


Asunto(s)
Conectoma , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Masculino , Conectoma/métodos , Accidente Cerebrovascular Isquémico/patología , Tálamo/patología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Fatiga/diagnóstico por imagen , Fatiga/etiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38913036

RESUMEN

A novel chemoheterotrophic iron-reducing micro-organism, designated as strain LSZ-M11000T, was isolated from sediment of the Marianas Trench. Phylogenetic analysis based on the 16S rRNA gene revealed that strain LSZ-M11000T belonged to genus Tepidibacillus, with 97 % identity to that of Tepidibacillus fermentans STGHT, a mesophilic bacterium isolated from the Severo-Stavropolskoye underground gas storage facility in Russia. The polar lipid profile of strain LSZ-M11000T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, as well as other unidentified phospholipids and lipids. The major fatty acids were C16 : 0 (28.4 %), C18 : 0 (15.8 %), iso-C15 : 0 (12.9 %), and anteiso-C15 : 0 (12.0 %). Strain LSZ-M11000T had no menaquinone. Genome sequencing revealed that the genome size of strain LSZ-M11000T was 2.97 Mb and the DNA G+C content was 37.9 mol%. The average nucleotide identity values between strain LSZ-M11000T and its close phylogenetic relatives, Tepidibacillus fermentans STGHT and Tepidibacillus decaturensis Z9T, were 76.4 and 72.6 %, respectively. The corresponding DNA-DNA hybridization estimates were 20.9 and 23.4 %, respectively. Cells of strain LSZ-M11000T were rod-shaped (1.0-1.5×0.3-0.5 µm). Using pyruvate as an electron donor, it was capable of reducing KMnO4, MnO2, As(V), NaNO3, NaNO2, Na2SO4, Na2S2O3, and K2Cr2O7. Based on phenotypic, genotypic, and phylogenetic evidence, strain LSZ-M11000T is proposed to be a novel strain of the genus Tepidibacillus, for which the name Tepdibacillus marianensis is proposed. The type strain is LSZ-M11000T (=CCAM 1008T=JCM 39431T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hierro , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , ADN Bacteriano/genética , Federación de Rusia , Hierro/metabolismo , Procesos Heterotróficos , Hibridación de Ácido Nucleico , Bacillaceae/clasificación , Bacillaceae/genética , Bacillaceae/aislamiento & purificación , Secuenciación Completa del Genoma , Oxidación-Reducción
3.
Environ Sci Technol ; 57(6): 2625-2635, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36668684

RESUMEN

Microorganisms play crucial roles in the global iodine cycling through iodine oxidation, reduction, volatilization, and deiodination. In contrast to iodate formation in radionuclide-contaminated groundwater by the iodine-oxidizing bacteria, microbial contribution to the formation of high level of iodide in geogenic high iodine groundwater is poorly understood. In this study, our results of comparative metagenomic analyses of deep groundwater with typical high iodide concentrations in the North China Plain revealed the existence of putative dissimilatory iodate-reducing idrABP1P2 gene clusters in groundwater. Heterologous expression and characterization of an identified idrABP1P2 gene cluster confirmed its functional role in iodate reduction. Thus, microbial dissimilatory iodate reduction could contribute to iodide formation in geogenic high iodine groundwater. In addition, the identified iron-reducing, sulfur-reducing, sulfur-oxidizing, and dehalogenating bacteria in the groundwater could contribute to the release and production of iodide through the reductive dissolution of iron minerals, abiotic iodate reduction of derived ferrous iron and sulfide, and dehalogenation of organic iodine, respectively. These microbially mediated iodate reduction and organic iodine dehalogenation processes may also result in the transformation among iodine species and iodide enrichment in other geogenic iodine-rich groundwater systems worldwide.


Asunto(s)
Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Yoduros/análisis , Yodatos/análisis , Yodo/análisis , Hierro , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , China , Azufre/análisis , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 57(48): 19817-19826, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37972243

RESUMEN

Iodate (IO3-) can be abiotically reduced by Fe(II) or biotically reduced by the dissimilatory Fe(III)-reducing bacterium Shewanella oneidensis (MR-1) via its DmsEFAB and MtrCAB. However, the intermediates and stoichiometry between the Fe(II) and IO3- reaction and the relative contribution of abiotic and biotic IO3- reduction by biogenic Fe(II) and MR-1 in the presence of Fe(III) remain unclear. In this study, we found that abiotic reduction of IO3- by Fe(II) produced intermediates HIO and I- at a ratio of 1:2, followed by HIO disproportionation to I- and IO3-. Comparative analyses of IO3- reduction by MR-1 wild type (WT), MR-1 mutants deficient in DmsEFAB or MtrCAB, and Shewanella sp. ANA-3 in the presence of Fe(III)-citrate, Fe(III) oxides, or clay minerals showed that abiotic IO3- reduction by biogenic Fe(II) predominated under iron-rich conditions, while biotic IO3- reduction by DmsEFAB played a more dominant role under iron-poor conditions. Compared to that in the presence of Fe(III)-citrate, MR-1 WT reduced more IO3- in the presence of Fe(III) oxides and clay minerals. The observed abiotic and biotic IO3- reduction by MR-1 under Fe-rich and Fe-limited conditions suggests that Fe(III)-reducing bacteria could contribute to the transformation of iodine species and I- enrichment in natural iodine-rich environments.


Asunto(s)
Yodo , Shewanella , Compuestos Férricos , Oxidación-Reducción , Yodatos , Arcilla , Óxidos , Hierro , Compuestos Ferrosos , Minerales , Citratos
5.
Environ Sci Technol ; 57(40): 15277-15287, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37751521

RESUMEN

Bacterial sulfate reduction plays a crucial role in the mobilization of toxic substances in aquifers. However, the role of bacterial sulfate reduction on iodine mobilization in geogenic high-iodine groundwater systems has been unexplored. In this study, the enrichment of groundwater δ34SSO4 (15.56 to 69.31‰) and its significantly positive correlation with iodide and total iodine concentrations in deep groundwater samples of the North China Plain suggested that bacterial sulfate reduction participates in the mobilization of groundwater iodine. Similar significantly positive correlations were further observed between the concentrations of iodide and total iodine and the relative abundance of the dsrB gene by qPCR, as well as the composition and abundance of sulfate-reducing bacteria (SRB) predicted from 16S rRNA gene high-throughput sequencing data. Subsequent batch culture experiments by the SRB Desulfovibrio sp. B304 demonstrated that SRB could facilitate iodine mobilization through the enzyme-driven biotic and sulfide-driven abiotic reduction of iodate to iodide. In addition, the dehalogenation of organoiodine compounds by SRB and the reductive dissolution of iodine-bearing iron minerals by biogenic sulfide could liberate bound or adsorbed iodine into groundwater. The role of bacterial sulfate reduction in iodine mobilization revealed in this study provides new insights into our understanding of iodide enrichment in iodine-rich aquifers worldwide.


Asunto(s)
Arsénico , Agua Subterránea , Yodo , Contaminantes Químicos del Agua , Yodo/análisis , Yoduros/análisis , ARN Ribosómico 16S/genética , Bacterias/metabolismo , Sulfuros , Sulfatos/análisis , China , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 57(13): 5125-5136, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36877892

RESUMEN

Linking groundwater quality to health will make the invisible groundwater visible, but there are knowledge gaps to understand the linkage which requires cross-disciplinary convergent research. The substances in groundwater that are critical to health can be classified into five types according to the sources and characteristics: geogenic substances, biogenic elements, anthropogenic contaminants, emerging contaminants, and pathogens. The most intriguing questions are related to quantitative assessment of human health and ecological risks of exposure to the critical substances via natural or induced artificial groundwater discharge: What is the list of critical substances released from discharging groundwater, and what are the pathways of the receptors' exposure to the critical substances? How to quantify the flux of critical substances during groundwater discharge? What procedures can we follow to assess human health and ecological risks of groundwater discharge? Answering these questions is fundamental for humans to deal with the challenges of water security and health risks related to groundwater quality. This perspective provides recent progresses, knowledge gaps, and future trends in understanding the linkage between groundwater quality and health.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Monitoreo del Ambiente/métodos , Agua , Contaminantes Químicos del Agua/análisis , Calidad del Agua
7.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37112169

RESUMEN

The status of zinc oxide (ZnO) arresters is directly related to the safety of power grids. However, as the service life of ZnO arresters increases, their insulation performance may decrease due to factors such as operating voltage and humidity, which can be identified through the measurement of leakage current. Tunnel magnetoresistance (TMR) sensors with high sensitivity, good temperature stability, and small size are excellent for measuring leakage current. This paper constructs a simulation model of the arrester and investigates the deployment of the TMR current sensor and the size of the magnetic concentrating ring. The arrester's leakage current magnetic field distribution under different operating conditions is simulated. The simulation model can aid in optimizing the detection of leakage current in arresters using TMR current sensors, and the findings serve as a basis for monitoring the condition of arresters and improving the installation of current sensors. The TMR current sensor design offers potential advantages such as high accuracy, miniaturization, and ease of distributed application measurement, making it suitable for large-scale use. Finally, the validity of the simulations and conclusions is verified through experiments.

8.
Environ Microbiol ; 24(11): 5039-5050, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35837844

RESUMEN

To investigate their roles in extracellular reduction of iodate (IO3 - ) with lactate as an electron donor, the gene clusters of dmsEFAB, mtrCAB, mtrDEF and so4360-4357 in Shewanella oneidensis MR-1 were systematically deleted. Deletions of dmsEFAB and/or mtrCAB gene clusters diminished the bacterial ability to reduce IO3 - . Furthermore, DmsEFAB and MtrCAB worked collaboratively to reduce IO3 - of which DmsEFAB played a more dominant role than MtrCAB. MtrCAB was involved in detoxifying the reaction intermediate hydrogen peroxide (H2 O2 ). The reaction intermediate hypoiodous acid (HIO) was also found to inhibit microbial IO3 - reduction. SO4360-4357 and MtrDEF, however, were not involved in IO3 - reduction. Collectively, these results suggest a novel mechanism of extracellular reduction of IO3 - at molecular level, in which DmsEFAB reduces IO3 - to HIO and H2 O2 . The latter is further reduced to H2 O by MtrCAB to facilitate the DmsEFAB-mediated IO3 - reduction. The extracellular electron transfer pathway of S. oneidensis MR-1 is believed to mediate electron transfer from bacterial cytoplasmic membrane, across the cell envelope to the DmsEFAB and MtrCAB on the bacterial outer membrane.


Asunto(s)
Yodatos , Shewanella , Yodatos/metabolismo , Ácido Láctico/metabolismo , Electrones , Proteínas Bacterianas/metabolismo , Shewanella/genética , Shewanella/metabolismo , Transporte de Electrón , Oxidación-Reducción
9.
Environ Microbiol ; 24(2): 803-818, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34081382

RESUMEN

The relative abundance of Acidobacteriia correlated positively with the concentrations of arsenic (As), mercury (Hg), chromium (Cr), copper (Cu) and other metals, suggesting their adaptation of the metal-rich environments. Metagenomic binning reconstructed 29 high-quality metagenome-assembled genomes (MAGs) associated with Acidobacteriia, providing an opportunity to study their metabolic potentials. These MAGs contained genes to transform As, Hg and Cr through oxidation, reduction, efflux and demethylation, suggesting the potential of Acidobacteriia to transform such metal(loid)s. Additionally, genes associated with alleviation of acidic and metal stress were also detected in these MAGs. Acidobacteriia may have the capabilities to resist or transform metal(loid)s in acidic metal-contaminated sites. Moreover, these genes encoding metal transformation could be also identified in the Acidobacteriia-associated MAGs from five additional metal-contaminated sites across Southwest China, as well as Acidobacteriia-associated reference genomes from the NCBI database, suggesting that the capability of metal transformation may be widespread among Acidobacteriia members. This discovery provides an understanding of metabolic potentials of the Acidobacteriia in acidic metal-rich sites.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Metagenoma , Metales/análisis , Suelo
10.
Environ Sci Technol ; 56(22): 15705-15717, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36288260

RESUMEN

Microplastic (MP) contamination is a serious global environmental problem. Plastic contamination has attracted extensive attention during the past decades. While physiochemical weathering may influence the properties of MPs, biodegradation by microorganisms could ultimately mineralize plastics into CO2. Compared to the well-studied marine ecosystems, the MP biodegradation process in riverine ecosystems, however, is less understood. The current study focuses on the MP biodegradation in one of the world's most plastic contaminated rivers, Pearl River, using micropolyethylene (mPE) as a model substrate. Mineralization of 13C-labeled mPE into 13CO2 provided direct evidence of mPE biodegradation by indigenous microorganisms. Several Actinobacteriota genera were identified as putative mPE degraders. Furthermore, two Mycobacteriaceae isolates related to the putative mPE degraders, Mycobacterium sp. mPE3 and Nocardia sp. mPE12, were retrieved, and their ability to mineralize 13C-mPE into 13CO2 was confirmed. Pangenomic analysis reveals that the genes related to the proposed mPE biodegradation pathway are shared by members of Mycobacteriaceae. While both Mycobacterium and Nocardia are known for their pathogenicity, these populations on the plastisphere in this study were likely nonpathogenic as they lacked virulence factors. The current study provided direct evidence for MP mineralization by indigenous biodegraders and predicted their biodegradation pathway, which may be harnessed to improve bioremediation of MPs in urban rivers.


Asunto(s)
Mycobacteriaceae , Contaminantes Químicos del Agua , Plásticos/análisis , Ecosistema , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Dióxido de Carbono/análisis , Ríos/química
11.
Environ Sci Technol ; 56(22): 16428-16440, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36301735

RESUMEN

Increasing CO2 emission has resulted in pressing climate and environmental issues. While abiotic and biotic processes mediating the fate of CO2 have been studied separately, their interactions and combined effects have been poorly understood. To explore this knowledge gap, an iron-reducing organism, Orenia metallireducens, was cultured under 18 conditions that systematically varied in headspace CO2 concentrations, ferric oxide loading, and dolomite (CaMg(CO3)2) availability. The results showed that abiotic and biotic processes interactively mediate CO2 acidification and sequestration through "chain reactions", with pH being the dominant variable. Specifically, dolomite alleviated CO2 stress on microbial activity, possibly via pH control that transforms the inhibitory CO2 to the more benign bicarbonate species. The microbial iron reduction further impacted pH via the competition between proton (H+) consumption during iron reduction and H+ generation from oxidization of the organic substrate. Under Fe(III)-rich conditions, microbial iron reduction increased pH, driving dissolved CO2 to form bicarbonate. Spectroscopic and microscopic analyses showed enhanced formation of siderite (FeCO3) under elevated CO2, supporting its incorporation into solids. The results of these CO2-microbe-mineral experiments provide insights into the synergistic abiotic and biotic processes that alleviate CO2 acidification and favor its sequestration, which can be instructive for practical applications (e.g., acidification remediation, CO2 sequestration, and modeling of carbon flux).


Asunto(s)
Compuestos Férricos , Hierro , Compuestos Férricos/química , Hierro/química , Dióxido de Carbono , Bicarbonatos , Carbonatos/química , Minerales , Oxidación-Reducción
12.
Exp Cell Res ; 398(1): 112393, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253708

RESUMEN

Thymic stromal lymphopoietin (TSLP) is associated with fungal keratitis. This work aims to investigate whether TSLP can regulate T helper (Th) 17 and regulatory T cell (Treg) differentiation. We separated dendritic cells (DCs) from peripheral blood of healthy volunteers. DCs were treated with TSLP to activate DCs, and exosomes were obtained. CD+ T cells were incubated with exosomes from TSLP-treated DCs. We found that exosomes from TSLP-treated DCs notably promoted the proportions of Th17 cells and inhibited the proportions of Tregs in the CD4+ T cells. Moreover, exosomes from TSLP-treated DCs enhanced the expression of retinoid-related orphan receptor γt (RORγt) and interleukin 17 (IL-17), and repressed the expression of forkhead box protein P3 (Foxp3) and interleukin 10 (IL-10) in the CD4+ T cells. Furthermore, miR-21 was highly expressed in exosomes from TSLP-treated DCs. Exosomes from TSLP-treated miR-21-silenced DCs promoted Treg differentiation and suppressed Th17 differentiation. Smad7 up-regulation repressed Th17 differentiation and enhanced Treg differentiation, which was abolished by miR-21 overexpression. Smad7 overexpression rescued the effect of exosomes from TSLP-treated DCs on Th17/Treg differentiation. In conclusion, our article confirms that TSLP induces DCs to deliver miR-21 by secreting exosomes, and thus miR-21 regulates Th17/Treg differentiation by inhibiting Smad7. Thus, this work further reveals the biological role of miR-21 in fungal keratitis.


Asunto(s)
Citocinas/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Proteína smad7/metabolismo , Linfocitos T Reguladores/metabolismo , Diferenciación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Voluntarios Sanos , Humanos , MicroARNs/genética , Proteína smad7/genética , Células Th17/metabolismo , Linfopoyetina del Estroma Tímico
13.
Arch Biochem Biophys ; 711: 109024, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34487720

RESUMEN

This study attempted to determine the effect of EphA2 on H2O2-treated lens epithelial cells (SRA01/04) and the underlying mechanisms. MTT assay and flow cytometry were performed to assess cell viability and cell apoptosis. Western blot was carried out to examine the levels of proteins associated with apoptosis and autophagy. Our results revealed that EphA2 significantly elevated the reduced cell viability, and inhibited the increased cell apoptosis in H2O2-treated SRA01/04 cells, along with the significant up-regulated Bcl-2 and down-regulated Cleaved-caspase-3 and Bax protein levels, but which were all abolished by Rapa (autophagy activator). We also found that EphA2 significantly suppressed cell autophagy in H2O2-treated SRA01/04 cells. Additionally, EphA2 significantly up-regulated the protein levels of p-Akt and p-mTOR in H2O2-treated SRA01/04 cells, and the inhibition of Akt by MK-2206 and inhibition of mTOR by Rapa both obviously reversed EphA2-mediated the inhibition of autophagy in H2O2-treated SRA01/04 cells. In summary, these data demonstrated that EphA2 inhibited the apoptosis of SRA01/04 cells by inhibiting autophagy via activating PI3K/Akt/mTOR pathway.


Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Receptor EphA2/metabolismo , Transducción de Señal/fisiología , Apoptosis/efectos de los fármacos , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Cristalino/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
14.
Microb Ecol ; 82(3): 623-637, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33580272

RESUMEN

The mining, smelting, manufacturing, and disposal of vanadium (V) and associated products have caused serious environmental problems. Although the microbial ecology in V-contaminated soils has been intensively studied, the impacted watershed ecosystems have not been systematically investigated. In this study, geochemistry and microbial structure were analyzed along ~30 km of the Jinsha River and its two tributaries across the industrial areas in Panzhihua, one of the primary V mining and production cities in China. Geochemical analyses showed different levels of contamination by metals and metalloids in the sediments, with high degrees of contamination observed in one of the tributaries close to the industrial park. Analyses of the V4 hypervariable region of 16S rRNA genes of the microbial communities in the sediments showed significant decrease in microbial diversity and microbial structure in response to the environmental gradient (e.g., heavy metals, total sulfur, and total nitrogen). Strong association of the taxa (e.g., Thauera, Algoriphagus, Denitromonas, and Fontibacter species) with the metals suggested selection for these potential metal-resistant and/or metabolizing populations. Further co-occurrence network analysis showed that many identified potential metal-mediating species were among the keystone taxa that were closely associated in the same module, suggesting their strong inter-species interactions but relative independence from other microorganisms in the hydrodynamic ecosystems. This study provided new insight into the microbe-environment interactions in watershed ecosystems differently impacted by the V industries. Some of the phylotypes identified in the highly contaminated samples exhibited potential for bioremediation of toxic metals (e.g., V and Cr).


Asunto(s)
Metales Pesados , Microbiota , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Minería , ARN Ribosómico 16S/genética , Ríos , Vanadio/análisis
15.
Environ Sci Technol ; 55(20): 13902-13912, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34581566

RESUMEN

Microorganisms play an important role in altering antimony (Sb) speciation, mobility, and bioavailability, but the understanding of the microorganisms responsible for Sb(V) reduction has been limited. In this study, DNA-stable isotope probing (DNA-SIP) and metagenomics analysis were combined to identify potential Sb(V)-reducing bacteria (SbRB) and predict their metabolic pathways for Sb(V) reduction. Soil slurry cultures inoculated with Sb-contaminated paddy soils from two Sb-contaminated sites demonstrated the capability to reduce Sb(V). DNA-SIP identified bacteria belonging to the genera Pseudomonas and Geobacter as putative SbRB in these two Sb-contaminated sites. In addition, bacteria such as Lysinibacillus and Dechloromonas may potentially participate in Sb(V) reduction. Nearly complete draft genomes of putative SbRB (i.e., Pseudomonas and Geobacter) were obtained, and the genes potentially responsible for arsenic (As) and Sb reduction (i.e., respiratory arsenate reductase (arrA) and antimonate reductase (anrA)) were examined. Notably, bins affiliated with Geobacter contained arrA and anrA genes, supporting our hypothesis that they are putative SbRB. Further, pangenomic analysis indicated that various Geobacter-associated genomes obtained from diverse habitats also contained arrA and anrA genes. In contrast, Pseudomonas may use a predicted DMSO reductase closely related to sbrA (Sb(V) reductase gene) clade II to reduce Sb(V), which may need further experiments to verify. This current work represents a demonstration of using DNA-SIP and metagenomic-binning to identify SbRB and their key genes involved in Sb(V) reduction and provides valuable data sets to link bacterial identities with Sb(V) reduction.


Asunto(s)
Bacterias , Metagenómica , Antimonio , Bacterias/genética , Isótopos , Oxidación-Reducción
16.
Exp Eye Res ; 200: 108251, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32950535

RESUMEN

BACKGROUND: Long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) takes part in diabetic cataract progression. This research aims to analyze the function and mechanism of KCNQ1OT1 on viability, migration and epithelial-mesenchymal transition (EMT) in lens epithelial cells. METHODS: 20 diabetic cataract posterior lens capsule tissues and normal samples were collected. Lens epithelial cells (SRA01/04) were stimulated via high glucose (HG). The levels of KCNQ1OT1, miR-26a-5p, integrin αV (ITGAV), TGF-ß, Smad3 and phosphorylated (p)-Smad3 were measured via quantitative real-time polymerase chain reaction or Western blot. Cell viability, migration and EMT were analyzed via MTT, wound healing, transwell and Western blot assays. The target relationship between miR-26a-5p and KCNQ1OT1 or ITGAV was determined via luciferase reporter assay. RESULTS: KCNQ1OT1 was up-regulated and miR-26a-5p level was reduced in diabetic cataract tissues and HG-treated SRA01/04 cells. Silence of KCNQ1OT1 or miR-26a-5p up-regulation repressed cell viability, migration and EMT in SRA01/04 cells stimulated via HG. KCNQ1OT1 could target miR-26a-5p and controlled cell viability, migration and EMT via regulating miR-26a-5p. ITGAV was targeted via miR-26a-5p and positively regulated via KCNQ1OT1. ITGAV overexpression promoted cell viability, migration and EMT in HG-treated SRA01/04 cells, which were mitigated by KCNQ1OT1 silence. KCNQ1OT1 knockdown mitigated HG-induced the activation of TGF-ß/Smad3 signaling by regulating miR-26a-5p. CONCLUSION: KCNQ1OT1 knockdown represses cell viability, migration and EMT through miR-26a-5p/ITGAV/TGF-ß/Smad3 axis in SRA01/04 cells under HG condition, providing a new target for the treatment of diabetic cataract.


Asunto(s)
Catarata/genética , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , Cristalino/metabolismo , MicroARNs/genética , Catarata/metabolismo , Catarata/patología , Línea Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Epiteliales/patología , Humanos , Cristalino/citología , MicroARNs/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo
17.
Environ Sci Technol ; 54(18): 11258-11270, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786562

RESUMEN

Metal contamination released from tailings is a global environmental concern. Although phytoremediation is a promising remediation method, its practice is often impeded by the adverse tailing geochemical conditions, which suppress biological activities. The ecosystem services provided by indigenous microorganisms could alter environmental conditions and facilitate revegetation in tailings. During the process, the keystone taxa of the microbial community are assumed an essential role in regulating the community composition and functions. The identity and the environmental functions of the keystone taxa during tailing revegetation, however, remain unelucidated. The current study compared the microbial community composition and interactions of two contrasting stibnite (Sb2S3) tailings, one revegetated and one unvegetated. The microbial interaction networks and keystone taxa were significantly different in the two tailings. Similar keystone taxa were also identified in other revegetated tailings, but not in their corresponding unvegetated tailings. Metagenome-assembled genomes (MAGs) indicated that the keystone taxa in the revegetated tailing may use both organic and inorganic energy sources (e.g., sulfur, arsenic, and antimony). They could also facilitate plant growth since a number of plant-growth-promoting genes, including phosphorus solubilization and siderophore production genes, were encoded. The current study suggests that keystone taxa may play important roles in tailing revegetation by providing nutrients, such as P and Fe, and promoting plant growth.


Asunto(s)
Arsénico , Microbiota , Contaminantes del Suelo , Antimonio , Biodegradación Ambiental , Microbiología del Suelo , Contaminantes del Suelo/análisis
18.
Environ Sci Technol ; 54(10): 6082-6093, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32216300

RESUMEN

Nutrient deficiency, especially bio-available nitrogen deficiency, often impedes the bioremediation efforts of mining generated tailings. Biological nitrogen fixation is a critical process necessary for the initial nitrogen buildup in tailings. Current knowledge regarding the diazotrophs that inhabit tailings is still in its infancy. Therefore, in this study, a comprehensive investigation combining geochemical characterization, sequence analyses, molecular techniques, and activity measurements was conducted to characterize the diazotrophic community residing in tailing environments. Significant differences between tailings and their adjacent soils in prokaryotic and diazotrophic communities were detected. Meanwhile, strong and significant correlations between the absolute abundance of the nitrogen fixation (nifH), carbon fixation (cbbL), sulfur oxidation (soxB), and arsenite oxidation (aioA) genes were observed in the tailings but not in the soils. The reconstructed nif-containing metagenome-assembled genomes (MAGs) suggest that the carbon fixation and sulfur oxidation pathways were important for potential diazotrophs inhabiting the tailings. Activity measurements further confirmed that diazotrophs inhabiting tailings preferentially use inorganic electron donors (e.g., elemental sulfur) compared to organic electron donors (e.g., sucrose), while diazotrophs inhabiting soils preferred organic carbon sources. Collectively, these findings suggest that chemolithoautotrophic diazotrophs may play essential roles in acquiring nutrients and facilitating ecological succession in tailings.


Asunto(s)
Minería , Fijación del Nitrógeno , Biodegradación Ambiental , Nitrógeno/análisis , Microbiología del Suelo
19.
Environ Sci Technol ; 54(16): 10128-10140, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32693580

RESUMEN

Microbial iron reduction is a ubiquitous biogeochemical process driven by diverse microorganisms in a variety of environments. However, it is often difficult to separate the biological from the geochemical controls on bioreduction of Fe(III) oxides. Here, we investigated the primary driving factor(s) that mediate secondary iron mineral formation over a broad range of environmental conditions using a single dissimilatory iron reducer, Orenia metallireducens strain Z6. A total of 17 distinct geochemical conditions were tested with differing pH (6.5-8.5), temperature (22-50 °C), salinity (2-20% NaCl), anions (phosphate and sulfate), electron shuttle (anthraquinone-2,6-disulfonate), and Fe(III) oxide mineralogy (ferrihydrite, lepidocrocite, goethite, hematite, and magnetite). The observed rates and extent of iron reduction differed significantly with kint between 0.186 and 1.702 mmol L-1 day-1 and Fe(II) production ranging from 6.3% to 83.7% of the initial Fe(III). Using X-ray absorption and scattering techniques (EXAFS and XRD), we identified and assessed the relationship between secondary minerals and the specific environmental conditions. It was inferred that the observed bifurcation of the mineralization pathways may be mediated by differing extents of Fe(II) sorption on the remaining Fe(III) minerals. These results expand our understanding of the controls on biomineralization during microbial iron reduction and aid the development of practical applications.


Asunto(s)
Compuestos Férricos , Firmicutes , Biomineralización , Hierro , Minerales , Oxidación-Reducción
20.
Microb Ecol ; 78(3): 651-664, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30854582

RESUMEN

Microbial communities inhabiting the acid mine drainage (AMD) have been extensively studied, but the microbial communities in the coal mining waste dump that may generate the AMD are still relatively under-explored. In this study, we characterized the microbial communities within these under-explored extreme habitats and compared with those in the downstream AMD creek. In addition, the interplay between the microbiota and the environmental parameters was statistically investigated. A Random Forest ensemble model indicated that pH was the most important environmental parameter influencing microbial community and diversity. Parameters associated with nitrogen cycling were also critical factors, with positive effects on microbial diversity, while S-related parameters had negative effects. The microbial community analysis also indicated that the microbial assemblage was driven by pH. Various taxa were enriched in different pH ranges: Sulfobacillus was the indicator genus in samples with pH < 3 while Acidobacteriaceae-affiliated bacteria prevailed in samples with 3 < pH < 3.5. The detection of some lineages that are seldom reported in mining areas suggested the coal mining dumps may be a reservoir of phylogenetic novelty. For example, potential nitrogen fixers, autotrophs, and heterotrophs may form diverse communities that actively self-perpetuate pyrite dissolution and acidic waste generation, suggesting unique ecological strategies adopted by these innate microorganisms. In addition, co-occurrence network analyses suggest that members of Acidimicrobiales play important roles in interactions with other taxa, especially Fe- and S-oxidizing bacteria such as Sulfobacillus spp.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Microbiota , Aguas Residuales/microbiología , Ácidos/análisis , Ácidos/metabolismo , Bacterias/clasificación , Bacterias/genética , Minas de Carbón , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Nitrógeno/metabolismo , Filogenia , Sulfuros/metabolismo , Instalaciones de Eliminación de Residuos , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA