Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Am Soc Nephrol ; 34(4): 590-606, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36810260

RESUMEN

SIGNIFICANCE STATEMENT: G protein-coupled receptor kinase 4 (GRK4) regulates renal sodium and water reabsorption. Although GRK4 variants with elevated kinase activity have been associated with salt-sensitive or essential hypertension, this association has been inconsistent among different study populations. In addition, studies elucidating how GRK4 may modulate cellular signaling are sparse. In an analysis of how GRK4 affects the developing kidney, the authors found that GRK4 modulates mammalian target of rapamycin (mTOR) signaling. Loss of GRK4 in embryonic zebrafish causes kidney dysfunction and glomerular cysts. Moreover, GRK4 depletion in zebrafish and cellular mammalian models results in elongated cilia. Rescue experiments suggest that hypertension in carriers of GRK4 variants may not be explained solely by kinase hyperactivity; instead, elevated mTOR signaling may be the underlying cause. BACKGROUND: G protein-coupled receptor kinase 4 (GRK4) is considered a central regulator of blood pressure through phosphorylation of renal dopaminergic receptors and subsequent modulation of sodium excretion. Several nonsynonymous genetic variants of GRK4 have been only partially linked to hypertension, although these variants demonstrate elevated kinase activity. However, some evidence suggests that function of GRK4 variants may involve more than regulation of dopaminergic receptors alone. Little is known about the effects of GRK4 on cellular signaling, and it is also unclear whether or how altered GRK4 function might affect kidney development. METHODS: To better understand the effect of GRK4 variants on the functionality of GRK4 and GRK4's actions in cellular signaling during kidney development, we studied zebrafish, human cells, and a murine kidney spheroid model. RESULTS: Zebrafish depleted of Grk4 develop impaired glomerular filtration, generalized edema, glomerular cysts, pronephric dilatation, and expansion of kidney cilia. In human fibroblasts and in a kidney spheroid model, GRK4 knockdown produced elongated primary cilia. Reconstitution with human wild-type GRK4 partially rescues these phenotypes. We found that kinase activity is dispensable because kinase-dead GRK4 (altered GRK4 that cannot result in phosphorylation of the targeted protein) prevented cyst formation and restored normal ciliogenesis in all tested models. Hypertension-associated genetic variants of GRK4 fail to rescue any of the observed phenotypes, suggesting a receptor-independent mechanism. Instead, we discovered unrestrained mammalian target of rapamycin signaling as an underlying cause. CONCLUSIONS: These findings identify GRK4 as novel regulator of cilia and of kidney development independent of GRK4's kinase function and provide evidence that the GRK4 variants believed to act as hyperactive kinases are dysfunctional for normal ciliogenesis.


Asunto(s)
Quistes , Hipertensión , Humanos , Animales , Ratones , Fosforilación , Cilios/metabolismo , Pez Cebra/metabolismo , Riñón/metabolismo , Sodio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quistes/metabolismo , Mamíferos/metabolismo
2.
Nucleic Acids Res ; 47(1): 134-151, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30329080

RESUMEN

Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.


Asunto(s)
Cilios/genética , ADN Helicasas/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Transcripción Genética , Animales , Cilios/patología , Ciliopatías/genética , Ciliopatías/patología , Humanos , Mitosis/genética , Sitio de Iniciación de la Transcripción , Pez Cebra/genética
3.
Genesis ; 55(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28296185

RESUMEN

The LIM-homeodomain transcription factor Tailup (Tup) is a component of the complex cardiac transcriptional network governing specification and differentiation of cardiac cells in Drosophila. LIM-domain containing factors are known to interact with the adaptor molecule Chip/Ldb1 to form higher order protein complexes to regulate gene expression thereby determining a cell's developmental fate. However, with respect to Drosophila heart development, it has not been investigated yet, whether Chip and tup interact to regulate the generation of different cardiac cell types. Here we show that Chip is required for normal heart development and that it interacts with tup in this context. Particularly the number of Odd skipped-expressing pericardial cells depends on balanced amounts of Chip and Tup. Data from luciferase assays using Hand- and even-skipped reporter constructs in Drosophila S2 cells indicate that Chip and Tup act as a tetrameric complex on the regulatory regions of Hand and even-skipped (eve). Finally we have identified and verified five Tup binding sites in the eve mesodermal enhancer, which adds Tup as novel factor to directly regulate eve expression. Taken together this study provides novel findings regarding cardiac gene expression regulation in Drosophila.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Miocardio/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Línea Celular , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
4.
Dev Biol ; 337(2): 259-73, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19895805

RESUMEN

Forkhead box (Fox) transcription factors of subclass O are involved in cell survival, proliferation, apoptosis, cell metabolism and prevention of oxidative stress. FoxO genes are highly conserved throughout evolution and their functions were analyzed in several vertebrate and invertebrate organisms. We here report on the identification of FoxO4 and FoxO6 genes in Xenopus laevis and analyze their expression patterns in comparison with the previously described FoxO1 and FoxO3 genes. We demonstrate significant differences in their temporal and spatial expression during embryogenesis and in their relative expression within adult tissues. Overexpression of FoxO1, FoxO4 or FoxO6 results in severe gastrulation defects, while overexpression of FoxO3 reveals this defect only in a constitutively active form containing mutations of Akt-1 target sites. Injections of FoxO antisense morpholino oligonucleotides (MO) did not influence gastrulation, but, later onwards, the embryos showed a delay of development, severe body axis reduction and, finally, a high rate of lethality. Injection of FoxO4MO leads to specific defects in eye formation, neural crest migration and heart development, the latter being accompanied by loss of myocardin expression. Our observations suggest that FoxO genes in X. laevis are dispensable until blastopore closure but are required for tissue differentiation and organogenesis.


Asunto(s)
Desarrollo Embrionario/genética , Factores de Transcripción Forkhead/genética , Gastrulación/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Clonación Molecular , Anomalías Craneofaciales/patología , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Desarrollo Embrionario/efectos de los fármacos , Anomalías del Ojo/patología , Factores de Transcripción Forkhead/metabolismo , Gastrulación/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Cardiopatías Congénitas/patología , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo
5.
Cancers (Basel) ; 13(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34944838

RESUMEN

Ribosome biogenesis is essential for protein synthesis, cell growth and survival. The process takes places in nucleoli and is orchestrated by various proteins, among them RNA polymerases I-III as well as ribosome biogenesis factors. Perturbation of ribosome biogenesis activates the nucleolar stress response, which classically triggers cell cycle arrest and apoptosis. Nucleolar stress is utilized in modern anti-cancer therapies, however, also contributes to the development of various pathologies, including cancer. Growing evidence suggests that nucleolar stress stimulates compensatory cascades, for instance bulk autophagy. However, underlying mechanisms are poorly understood. Here we demonstrate that induction of nucleolar stress activates expression of key autophagic regulators such as ATG7 and ATG16L1, essential for generation of autophagosomes. We show that knockdown of the ribosomopathy factor SBDS, or of key ribosome biogenesis factors (PPAN, NPM, PES1) is associated with enhanced levels of ATG7 in cancer cells. The same holds true when interfering with RNA polymerase I function by either pharmacological inhibition (CX-5461) or depletion of the transcription factor UBF-1. Moreover, we demonstrate that RNA pol I inhibition by CX-5461 stimulates autophagic flux. Together, our data establish that nucleolar stress affects transcriptional regulation of autophagy. Given the contribution of both axes in propagation or cure of cancer, our data uncover a connection that might be targeted in future.

6.
Eur J Hum Genet ; 27(5): 772-782, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30696958

RESUMEN

Meier-Gorlin syndrome (MGS) is a rare, congenital primordial microcephalic dwarfism disorder. MGS is caused by genetic variants of components of the origin recognition complex (ORC) consisting of ORC1-6 and the pre-replication complex, which together enable origin firing and hence genome replication. In addition, ORC1 has previously been shown to play a role in ciliogenesis. Here, we extend this work and investigate the function of ORC1 and two other members of the complex on cilia at an organismal level. Knockdown experiments in zebrafish confirmed the impact of ORC1 on cilia. ORC1-deficiency confers defects anticipated to arise from impaired cilia function such as formation of oedema, kidney cysts, curved bodies and left-right asymmetry defects. We found ORC1 furthermore required for cilium formation in zebrafish and demonstrate that ciliopathy phenotypes in ORC1-depleted zebrafish could not be rescued by reconstitution with ORC1 bearing a genetic variant previously identified in MGS patients. Loss-of-function of Orc4 and Orc6, respectively, conferred similar ciliopathy phenotypes and cilium shortening in zebrafish, suggesting that several, if not all, components of the ORC regulate ciliogenesis downstream to or in addition to their canonical function in replication initiation. This study presents the first in vivo evidence of an influence of the MGS genes of the ORC family on cilia, and consolidates the possibility that cilia dysfunction could contribute to the clinical manifestation of ORC-deficient MGS.


Asunto(s)
Cilios/metabolismo , Embrión no Mamífero/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Ciliopatías/genética , Organogénesis , Fenotipo
7.
J Clin Invest ; 129(7): 2841-2855, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31094706

RESUMEN

About 1% of all newborns are affected by congenital heart disease (CHD). Recent findings identify aberrantly functioning cilia as a possible source for CHD. Faulty cilia also prevent the development of proper left-right asymmetry and cause heterotaxy, the incorrect placement of visceral organs. Intriguingly, signaling cascades such as mTor that influence mitochondrial biogenesis also affect ciliogenesis, and can cause heterotaxy-like phenotypes in zebrafish. Here, we identify levels of mitochondrial function as a determinant for ciliogenesis and a cause for heterotaxy. We detected reduced mitochondrial DNA content in biopsies of heterotaxy patients. Manipulation of mitochondrial function revealed a reciprocal influence on ciliogenesis and affected cilia-dependent processes in zebrafish, human fibroblasts and Tetrahymena thermophila. Exome analysis of heterotaxy patients revealed an increased burden of rare damaging variants in mitochondria-associated genes as compared to 1000 Genome controls. Knockdown of such candidate genes caused cilia elongation and ciliopathy-like phenotypes in zebrafish, which could not be rescued by RNA encoding damaging rare variants identified in heterotaxy patients. Our findings suggest that ciliogenesis is coupled to the abundance and function of mitochondria. Our data further reveal disturbed mitochondrial function as an underlying cause for heterotaxy-linked CHD and provide a mechanism for unexplained phenotypes of mitochondrial disease.


Asunto(s)
Cilios , ADN Mitocondrial , Genoma Humano , Síndrome de Heterotaxia , Mitocondrias , Enfermedades Mitocondriales , Animales , Cilios/genética , Cilios/metabolismo , Cilios/patología , Femenino , Síndrome de Heterotaxia/genética , Síndrome de Heterotaxia/metabolismo , Síndrome de Heterotaxia/patología , Humanos , Masculino , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Pez Cebra
8.
JCI Insight ; 4(20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31619590

RESUMEN

Deterioration or inborn malformations of the cardiac conduction system (CCS) interfere with proper impulse propagation in the heart and may lead to sudden cardiac death or heart failure. Patients afflicted with arrhythmia depend on antiarrhythmic medication or invasive therapy, such as pacemaker implantation. An ideal way to treat these patients would be CCS tissue restoration. This, however, requires precise knowledge regarding the molecular mechanisms underlying CCS development. Here, we aimed to identify regulators of CCS development. We performed a compound screen in zebrafish embryos and identified tolterodine, a muscarinic receptor antagonist, as a modifier of CCS development. Tolterodine provoked a lower heart rate, pericardiac edema, and arrhythmia. Blockade of muscarinic M3, but not M2, receptors induced transcriptional changes leading to amplification of sinoatrial cells and loss of atrioventricular identity. Transcriptome data from an engineered human heart muscle model provided additional evidence for the contribution of muscarinic M3 receptors during cardiac progenitor specification and differentiation. Taken together, we found that muscarinic M3 receptors control the CCS already before the heart becomes innervated. Our data indicate that muscarinic receptors maintain a delicate balance between the developing sinoatrial node and the atrioventricular canal, which is probably required to prevent the development of arrhythmia.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Sistema de Conducción Cardíaco/embriología , Antagonistas Muscarínicos/farmacología , Organogénesis/efectos de los fármacos , Receptor Muscarínico M3/metabolismo , Tartrato de Tolterodina/farmacología , Animales , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Embrión no Mamífero , Células HEK293 , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Ratones , Ratones Noqueados , Antagonistas Muscarínicos/uso terapéutico , Miocitos Cardíacos , Receptor Muscarínico M3/genética , Tartrato de Tolterodina/uso terapéutico , Xenopus laevis , Pez Cebra
9.
Mech Dev ; 123(1): 84-96, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16278078

RESUMEN

The active form of the Xenopus X-box binding protein 1 (xXBP1) partially synergizes and partially antagonizes with BMP-4 signaling. xXBP1 overexpression inhibits mesoderm differentiation and formation of neural tissues. A functional knockdown promotes differentiation of lateral and dorsal mesoderm but not of ventral mesoderm and of neuroectoderm. We show that the active form of xXBP1 in gastrula and early neurula stage embryos is generated by removal of exon 4 and not by an endoribonuclease activity in the endoplasmic reticulum. The N-terminal region of xXBP1 which contains the basic leucine-zipper also contains a nuclear localization signal and both, the N-terminal as well as the C-terminal regions are required for xXBP1 function. The effects of xXBP1 are in part correlated to a regulatory loop between xXBP1 and BMP-4. xXBP1 and BMP-4 stimulate mutually the transcription of each other, but xXBP1 inhibits the BMP-4 target gene, Xvent-2. Both, in vitro and in vivo assays demonstrate that xXBP1 interacts with BMP-4 and Xvent-2B promoters. GST-pulldown assays reveal that xXBP1 can interact with c-Jun, the transcriptional co-activator p300 and with the BMP-4 responsive Smad1. On the other hand, xXBP1 also binds to the inhibitory Smads, Smad6 and Smad7, that can act as transcriptional co-repressors. Based on these data, we conclude that xXBP1 might function as an inhibitor of mesodermal and neural tissue formation by acting either as transcriptional activator or as repressor. This dual activity depends upon binding of co-factors being involved in the formation of distinct transcription complexes.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Empalme Alternativo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Señales de Localización Nuclear , Fenotipo , Regiones Promotoras Genéticas , Eliminación de Secuencia , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
10.
Int J Dev Biol ; 50(4): 429-34, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16525939

RESUMEN

Using RT-PCR and in situ hybridisation, we have analysed the temporal and spatial expression patterns of Xenopus Fox genes of subclass N. By screening cDNA libraries and by RT-PCR using embryonic RNA and primers derived from EST analyses, we could isolate FoxN2, FoxN4, FoxN5 and different isoforms of FoxN3. FoxN2 and FoxN3 transcripts were found during all developmental stages including early cleavage and tailbud stages. FoxN5 transcripts were only present at early cleavage stages, while FoxN4 expression began after midblastula transition. Spatial expression of FoxN2 was first detected in the early eye field and later, in the branchial arches, the vagal ganglion and in the developing retina. FoxN3 transcripts were found within the animal cap. In post-gastrula embryos, neural crest cells and the early eye field showed strong expression of FoxN3. At late tadpole stages, the branchial arches were stained. FoxN4 was expressed in the early eye field and later in the developing retina cells, the nephrostomes of the pronephric kidney and in the midbrain. A ubiquitous expression of FoxN5 was found in early cleavage stage embryos.


Asunto(s)
Embrión no Mamífero/metabolismo , Factores de Transcripción Forkhead/biosíntesis , Perfilación de la Expresión Génica , Proteínas de Xenopus/biosíntesis , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/fisiología , Factores de Transcripción Forkhead/genética , Datos de Secuencia Molecular , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Proteínas de Xenopus/genética , Xenopus laevis
11.
PLoS One ; 9(12): e115208, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25514127

RESUMEN

Development and patterning of neural tissue in the vertebrate embryo involves a set of molecules and processes whose relationships are not fully understood. Classical embryology revealed a remarkable phenomenon known as vertical signalling, a gastrulation stage mechanism that copies anterior-posterior positional information from mesoderm to prospective neural tissue. Vertical signalling mediates unambiguous copying of complex information from one tissue layer to another. In this study, we report an investigation of this process in recombinates of mesoderm and ectoderm from gastrulae of Xenopus laevis. Our results show that copying of positional information involves non cell autonomous autoregulation of particular Hox genes whose expression is copied from mesoderm to neurectoderm in the gastrula. Furthermore, this information sharing mechanism involves unconventional translocation of the homeoproteins themselves. This conserved primitive mechanism has been known for three decades but has only recently been put into any developmental context. It provides a simple, robust way to pattern the neurectoderm using the Hox pattern already present in the mesoderm during gastrulation. We suggest that this mechanism was selected during evolution to enable unambiguous copying of rather complex information from cell to cell and that it is a key part of the original ancestral mechanism mediating axial patterning by the highly conserved Hox genes.


Asunto(s)
Tipificación del Cuerpo/fisiología , Comunicación Celular/fisiología , Gástrula/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/fisiología , Placa Neural/fisiología , Xenopus laevis/embriología , Animales , Evolución Biológica , Cartilla de ADN/genética , Drosophila , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Discos Imaginales/crecimiento & desarrollo , Faloidina
12.
Stem Cells Dev ; 21(8): 1225-38, 2012 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21967637

RESUMEN

Nanog is a homeodomain transcription factor associated with the acquisition of pluripotency. Genome analyses of lower and higher vertebrates revealed that the existence of Nanog is restricted to gnathostomata but absent from agnatha and invertebrates. To elucidate the function of Nanog in nonmammalia, we identified the Danio rerio ortholog of Nanog and characterized its role in gain and loss of function experiments. We found Nanog to be crucial for survival of early zebrafish embryos, because depletion of Nanog led to gastrulation defects with subsequent lethality. Mouse Nanog overexpression could rescue these defects. Vice versa, zebrafish Nanog was found to promote proliferation and to inhibit differentiation of mouse embryonic stem cells in the absence of leukemia inhibitory factor. These findings indicate functional conservation of Nanog from teleost fishes to mammals. However, Nanog was lost in the genome of the anurans Xenopus laevis and Xenopus tropicalis. Phylogenetic analysis revealed that deletion probably occurred in a common anuran ancestor along with chromosomal translocations. The closest homologs of Nanog in Xenopus are the Vent proteins. We, therefore, investigated whether the Xvent genes might substitute for Nanog function in Xenopus. Although we found some similarities in phenotypes after overexpression and in the regulation of several marker genes, Xvent1/2 and Nanog cannot substitute each other. Depletion of Nanog in zebrafish cannot be rescued by ectopic expression of Xvent, and Xvent depletion in Xenopus cannot be overcome by ectopic expression of zebrafish Nanog.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Variación Genética/efectos de los fármacos , Proteínas de Homeodominio/genética , Humanos , Factor Inhibidor de Leucemia/farmacología , Ratones , Proteína Homeótica Nanog , Unión Proteica/efectos de los fármacos , Especificidad de la Especie , Proteínas de Xenopus/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
13.
Dev Dyn ; 238(3): 755-65, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19235717

RESUMEN

Hox genes are key players in defining positional information along the main body axis of vertebrate embryos. In Xenopus laevis, Hoxc6 was the first homeobox gene isolated. It encodes two isoforms. We analyzed in detail their spatial and temporal expression pattern during early development. One major expression domain of both isoforms is the spinal cord portion of the neural tube. Within the spinal cord and its populations of primary neurons, Hox genes have been found to play a crucial role for defining positional information. Here we report that a loss-of-function of either one of the Hoxc6 products does not affect neural induction, the expression of general neural markers is not modified. However, Hoxc6 does widely affect the formation of primary neurons within the developing neural tissue. Manipulations of Hoxc6 expression severly changes the expression of the neuronal markers N-tubulin and Islet-1. Formation of primary neurons and formation of cranial nerves are affected. Hence, Hoxc6 functions are not restricted to the expected role in anterior-posterior pattern formation, but they also regulate N-tubulin, thereby having an effect on the initial formation of primary neurons in Xenopus laevis embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/metabolismo , Neurogénesis/genética , Transcripción Genética/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Animales , Biomarcadores , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Placa Neural/embriología , Placa Neural/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Receptores Notch/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/genética
14.
Dev Dyn ; 236(1): 226-39, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17089409

RESUMEN

A functional knockdown of FoxN3, a member of subclass N of fork head/winged helix transcription factors in Xenopus laevis, leads to an abnormal formation of the jaw cartilage, absence or malformation of distinct cranial nerves, and reduced size of the eye. While the eye phenotype is due to an increased rate of apoptosis, the cellular basis of the jaw phenotype is more complex. The upper and lower jaw cartilages are derivatives of a subset of cranial neural crest cells, which migrate into the first pharyngeal arch. Histological analysis of FoxN3-depleted embryos reveals severe deformation and false positioning of infrarostral, Meckel's, and palatoquadrate cartilages, structural elements derived from the first pharyngeal arch, and of the ceratohyale, which derives from the second pharyngeal arch. The derivatives of the third and fourth pharyngeal arches are less affected. FoxN3 is not required for early neural crest migration. Defects in jaw formation rather arise by failure of differentiation than by positional effects of crest migration. By GST-pulldown analysis, we have identified two different members of histone deacetylase complexes (HDAC), xSin3 and xRPD3, as putative interaction partners of FoxN3, suggesting that FoxN3 regulates craniofacial and eye development by recruiting HDAC.


Asunto(s)
Nervios Craneales/embriología , Ojo/embriología , Factores de Transcripción Forkhead/fisiología , Maxilares/embriología , Proteínas de Xenopus/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis , Secuencia de Bases , Biomarcadores , Proteínas Portadoras/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Nervios Craneales/metabolismo , Ojo/metabolismo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Humanos , Maxilares/metabolismo , Datos de Secuencia Molecular , Cresta Neural/embriología , Cresta Neural/metabolismo , Fenotipo , Proteínas Represoras/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
15.
EMBO J ; 26(12): 2942-54, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17541407

RESUMEN

VegT and beta-Catenin are key players in the hierarchy of factors that are required for induction and patterning of mesendoderm in Xenopus embryogenesis. By descending the genetic cascades, cells lose their pluripotent status and are determined to differentiate into distinct tissues. Mammalian Oct-3/4, a POU factor of subclass V (POU-V), is required for the maintenance of pluripotency of embryonic stem cells. However, its molecular function within the early embryo is yet poorly understood. We here show that the two maternal Xenopus POU-V factors, Oct-60 and Oct-25, inhibit transcription of genes activated by VegT and beta-Catenin. Maternal POU-V factors and maternal VegT show an opposite distribution along the animal/vegetal axis. Oct-25, VegT and Tcf3 interact with each other and form repression complexes on promoters of VegT and beta-Catenin target genes. We suggest that POU-V factors antagonize primary inducers to allow germ layer specification in a temporally and spatially coordinated manner.


Asunto(s)
Factores del Dominio POU/fisiología , Transducción de Señal , Proteínas de Dominio T Box/antagonistas & inhibidores , Proteínas de Xenopus/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Animales , Secuencia de Bases , ADN , Ensayo de Cambio de Movilidad Electroforética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Dominio T Box/metabolismo , Transcripción Genética , Xenopus , Proteínas de Xenopus/metabolismo , beta Catenina/metabolismo
16.
Dev Genes Evol ; 216(10): 641-6, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16609867

RESUMEN

We have investigated the sequences and the expression patterns of different members of the Xenopus laevis FoxP gene subfamily during embryogenesis. Low stringency hybridisation of a tadpole cDNA library with an xlFoxP2 fragment led to the isolation of several splice variants of xlFoxP1, xlFoxP2 and xlFoxP4. These variants do not only differ by utilisation of different leader exons, but also by alternative usage of coding exons thereby leading to functional alterations. For xlFoxP1b, we show that insertion of an additional exon disrupts binding to the co-repressor C-terminal binding protein1. Temporal and spatial expression patterns of xlFoxP2 and xlFoxP4 were analysed by RT-PCR and by whole mount in situ hybridisation. xlFoxP2 transcripts are detected from mid-gastrula to late tadpole stages and are found to be localised to pronephros, branchial arches and distinct structures of the hind-, mid- and forebrain, including the ciliary marginal zone of the retina. xlFoxP4 RNA is already present in early cleavage stage embryos and accumulates from midblastula until the end of embryogenesis. Localised expression is found within the anterior neural fold, in the mid- and hindbrain, in the branchial arches as well as in the pancreas.


Asunto(s)
Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Datos de Secuencia Molecular , Empalme del ARN , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/fisiología , Proteínas de Xenopus/química , Proteínas de Xenopus/fisiología
17.
J Biol Chem ; 279(42): 43735-43, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15292233

RESUMEN

The Xvent-2B promoter is regulated by a BMP-2/4-induced transcription complex comprising Smad signal transducers and specific transcription factors. Using a yeast one-hybrid screen we have found that Oct-25, a Xenopus POU domain protein related to mammalian Oct-3/4, binds as an additional factor to the Xvent-2B promoter. This interaction was further confirmed by both in vitro and in vivo analyses. The Oct-25 gene is mainly transcribed during blastula and gastrula stages in the newly forming ectodermal and mesodermal germ layers. Luciferase reporter gene assay demonstrated that Oct-25 stimulates transcription of the Xvent-2B gene. This stimulation depends on the Oct-25 binding site and the bone morphogenetic protein-responsive element. Furthermore, Oct-25 interacts in vitro with components of the Xvent-2B transcription complex, like Smad1/4 and Xvent-2. Overexpression of Oct-25 results in anterior/posterior truncations and lack of differentiation for neuroectoderm- and mesoderm-derived tissues including blood cells. This effect is consistent with an evolutionarily conserved role of class V POU factors in the maintenance of an undifferentiated cell state. In Xenopus, the molecular mechanism underlying this process might be coupled to the expression of Xvent proteins.


Asunto(s)
Embrión no Mamífero/fisiología , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Secuencia de Bases , Blastómeros/citología , Blastómeros/fisiología , Diferenciación Celular , Clonación Molecular , Huella de ADN , Cartilla de ADN , Desoxirribonucleasa I , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Reporteros , Datos de Secuencia Molecular , Factores de Transcripción/metabolismo , Xenopus laevis/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA