Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 130(9): 1404-1422, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35482836

RESUMEN

Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Pulmonares Intersticiales , Disfunción Ventricular Derecha , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/epidemiología , Pulmón , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Vasodilatadores , Disfunción Ventricular Derecha/tratamiento farmacológico
2.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474074

RESUMEN

Pulmonary hypertension (PH) associated with left heart disease (PH-LHD) is the most common form of PH. In PH-LHD, changes in the pulmonary vasculature are assumed to be mainly caused by pulmonary venous congestion. However, the underlying mechanisms of this form of PH are poorly understood. We aimed to establish a model of PH associated with pulmonary venous congestion. Wistar-Kyoto rats underwent partial occlusion of the left pulmonary vein to induce pulmonary venous congestion or sham surgery and were assessed at various time points post-surgery (3, 6, 9, 12 weeks). In vivo cardiopulmonary phenotyping was performed by using echocardiography along with heart catheterization. Histomorphometry methods were used to assess pulmonary vascular remodeling (e.g., wall thickness, degree of muscularization). Left pulmonary vein banding (PVB) resulted in mildly elevated right ventricular systolic pressure and moderate right ventricular hypertrophy. In PVB rats, small- and medium-sized pulmonary vessels in the left lung were characterized by increased wall thickness and muscularization. Taken together, our data demonstrate that left PVB-induced pulmonary venous congestion is associated with pulmonary vascular remodeling and mild PH.


Asunto(s)
Hiperemia , Hipertensión Pulmonar , Venas Pulmonares , Ratas , Animales , Remodelación Vascular , Ratas Endogámicas WKY
3.
Am J Respir Cell Mol Biol ; 68(3): 326-338, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36476191

RESUMEN

Pulmonary fibrosis (PF) and pulmonary hypertension (PH) are chronic diseases of the pulmonary parenchyma and circulation, respectively, which may coexist, but underlying mechanisms remain elusive. Mutations in the GCN2 (general control nonderepressible 2) gene (EIF2AK4 [eukaryotic translation initiation factor 2 alpha kinase 4]) were recently associated with pulmonary veno-occlusive disease. The aim of this study is to explore the involvement of the GCN2/eIF2α (eukaryotic initiation factor 2α) pathway in the development of PH during PF, in both human disease and in a laboratory animal model. Lung tissue from patients with PF with or without PH was collected at the time of lung transplantation, and control tissue was obtained from tumor resection surgery. Experimental lung disease was induced in either male wild-type or EIF2AK4-mutated Sprague-Dawley rats, randomly receiving a single intratracheal instillation of bleomycin or saline. Hemodynamic studies and organ collection were performed 3 weeks after instillation. Only significant results (P < 0.05) are presented. In PF lung tissue, GCN2 protein expression was decreased compared with control tissue. GCN2 expression was reduced in CD31+ endothelial cells. In line with human data, GCN2 protein expression was decreased in the lung of bleomycin rats compared with saline. EIF2AK4-mutated rats treated with bleomycin showed increased parenchymal fibrosis (hydroxyproline concentrations) and vascular remodeling (media wall thickness) as well as increased right ventricular systolic pressure compared with wild-type animals. Our data show that GCN2 is dysregulated in both humans and in an animal model of combined PF and PH. The possibility of a causative implication of GCN2 dysregulation in PF and/or PH development should be further studied.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Animales , Humanos , Masculino , Ratas , Bleomicina , Células Endoteliales/patología , Hipertensión Pulmonar/patología , Pulmón/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Fibrosis Pulmonar/patología , Ratas Sprague-Dawley
4.
Circulation ; 144(1): 52-73, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34078089

RESUMEN

BACKGROUND: Epigenetic mechanisms are critical in the pathogenesis of pulmonary arterial hypertension (PAH). Previous studies have suggested that hypermethylation of the BMPR2 (bone morphogenetic protein receptor type 2) promoter is associated with BMPR2 downregulation and progression of PAH. Here, we investigated for the first time the role of SIN3a (switch-independent 3a), a transcriptional regulator, in the epigenetic mechanisms underlying hypermethylation of BMPR2 in the pathogenesis of PAH. METHODS: We used lung samples from PAH patients and non-PAH controls, preclinical mouse and rat PAH models, and human pulmonary arterial smooth muscle cells. Expression of SIN3a was modulated using a lentiviral vector or a siRNA in vitro and a specific adeno-associated virus serotype 1 or a lentivirus encoding for human SIN3a in vivo. RESULTS: SIN3a is a known transcriptional regulator; however, its role in cardiovascular diseases, especially PAH, is unknown. It is interesting that we detected a dysregulation of SIN3 expression in patients and in rodent models, which is strongly associated with decreased BMPR2 expression. SIN3a is known to regulate epigenetic changes. Therefore, we tested its role in the regulation of BMPR2 and found that BMPR2 is regulated by SIN3a. It is interesting that SIN3a overexpression inhibited human pulmonary arterial smooth muscle cells proliferation and upregulated BMPR2 expression by preventing the methylation of the BMPR2 promoter region. RNA-sequencing analysis suggested that SIN3a downregulated the expression of DNA and histone methyltransferases such as DNMT1 (DNA methyltransferase 1) and EZH2 (enhancer of zeste 2 polycomb repressive complex 2) while promoting the expression of the DNA demethylase TET1 (ten-eleven translocation methylcytosine dioxygenase 1). Mechanistically, SIN3a promoted BMPR2 expression by decreasing CTCF (CCCTC-binding factor) binding to the BMPR2 promoter. Last, we identified intratracheal delivery of adeno-associated virus serotype human SIN3a to be a beneficial therapeutic approach in PAH by attenuating pulmonary vascular and right ventricle remodeling, decreasing right ventricle systolic pressure and mean pulmonary arterial pressure, and restoring BMPR2 expression in rodent models of PAH. CONCLUSIONS: All together, our study unveiled the protective and beneficial role of SIN3a in pulmonary hypertension. We also identified a novel and distinct molecular mechanism by which SIN3a regulates BMPR2 in human pulmonary arterial smooth muscle cells. Our study also identified lung-targeted SIN3a gene therapy using adeno-associated virus serotype 1 as a new promising therapeutic strategy for treating patients with PAH.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/biosíntesis , Terapia Genética/métodos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/terapia , Complejo Correpresor Histona Desacetilasa y Sin3/biosíntesis , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Metilación , Ratones , Hipertensión Arterial Pulmonar/genética , Ratas , Ratas Sprague-Dawley , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo
5.
Circulation ; 141(5): 376-386, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31896275

RESUMEN

BACKGROUND: Pulmonary endarterectomy (PEA) is the gold standard treatment for patients with operable chronic thromboembolic pulmonary hypertension. However, persistent pulmonary hypertension (PH) after PEA remains a major determinant of poor prognosis. A concomitant small-vessel arteriopathy in addition to major pulmonary artery obstruction has been suggested to play an important role in the development of persistent PH and survival after PEA. One of the greatest unmet needs in the current preoperative evaluation is to assess the presence and severity of small-vessel arteriopathy. Using the pulmonary artery occlusion technique, we sought to assess the presence and degree of small-vessel disease in patients with chronic thromboembolic pulmonary hypertension undergoing PEA to predict postoperative outcome before surgery. METHODS: Based on pulmonary artery occlusion waveforms yielding an estimate of the effective capillary pressure, we partitioned pulmonary vascular resistance in larger arterial (upstream resistance [Rup]) and small arterial plus venous components (downstream resistance) in 90 patients before PEA. For validation, lung wedge biopsies were taken from nonobstructed and obstructed lung territories during PEA in 49 cases. Biopsy sites were chosen according to the pulmonary angiogram still frames that were mounted in the operating room. All vessels per specimen were measured in each patient. Percent media (%MT; arteries) and intima thickness (%IT; arteries, veins, and indeterminate vessels) were calculated relative to external vessel diameter. RESULTS: Decreased Rup was an independent predictor of persistent PH (odds ratio per 10%, 0.40 [95% CI, 0.23-0.69]; P=0.001) and survival (hazard ratio per 10%, 0.03 [95% CI, 0.00-0.33]; p=0.004). Arterial %MT and %IT of nonobstructed lung territories and venous %IT of obstructed lung territories were significantly increased in patients with persistent PH and nonsurvivors. Rup correlated inversely with %MT (r=-0.72, P<0.001) and %IT (r=-0.62, P<0.001) of arteries from nonobstructed lung territories and with %IT (r=-0.44, P=0.024) of veins from obstructed lung territories. Receiver operating characteristic analysis disclosed that Rup <66% predicted persistent PH after PEA, whereas Rup <60% identified patients with poor prognosis after PEA. CONCLUSIONS: Pulmonary artery occlusion waveform analysis with estimation of Rup seems to be a valuable technique for assessing the degree of small-vessel disease and postoperative outcome after PEA in chronic thromboembolic pulmonary hypertension.


Asunto(s)
Hemodinámica/fisiología , Hipertensión Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Enfermedades Vasculares/fisiopatología , Adulto , Enfermedad Crónica , Femenino , Humanos , Hipertensión Pulmonar/diagnóstico , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Arteria Pulmonar/patología , Embolia Pulmonar/complicaciones , Embolia Pulmonar/fisiopatología , Enfermedades Vasculares/diagnóstico , Resistencia Vascular/fisiología
6.
J Clin Immunol ; 41(7): 1549-1562, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110542

RESUMEN

PURPOSE: Common variable immunodeficiency (CVID) is known to cause infectious, inflammatory, and autoimmune manifestations. Pulmonary hypertension (PH) is an unusual complication of CVID with largely unknown characteristics and mechanisms. METHODS: We report the clinical, functional, hemodynamics, radiologic and histologic characteristics, and outcomes of CVID-associated PH patients from the French PH Network. RESULTS: Ten patients were identified. The median (range) age at CVID diagnosis was 36.5 (4-49) years and the median delay between CVID and PH diagnosis was 12 (0-30) years. CVID-associated PH affected predominantly women (female-to-male ratio 9:1). Most patients were New York Heart Association functional class III with a severe hemodynamic profile and frequent portal hypertension (n = 6). Pulmonary function tests were almost normal in 70% of patients and showed a mild restrictive syndrome in 30% of patients while the diffusing capacity for carbon monoxide was decreased in all but one patient. High-resolution computed tomography found enlarged mediastinal nodes, mild interstitial infiltration with reticulations and nodules. Two patients had a CIVD-interstitial lung disease, and one presented with bronchiectasis. Pathologic assessment of lymph nodes performed in 5 patients revealed the presence of granulomas (n = 5) and follicular lymphoid hyperplasia (n = 3). At last follow-up (median 24.5 months), 9 patients were alive, and one patient died of Hodgkin disease. CONCLUSION: PH is a possible complication of CVID whose pathophysiological mechanisms, while still unclear, would be due to the inflammatory nature of CVID. CVID-associated PH presents as precapillary PH with multiple possible causes, acting in concert in some patients: a portal hypertension, a pulmonary vascular remodeling, sometimes a pulmonary parenchymal involvement and occasionally an extrinsic compression by mediastinal lymphadenopathies, which would be consistent with its classification in group 5 of the current PH classification.


Asunto(s)
Inmunodeficiencia Variable Común/complicaciones , Hipertensión Pulmonar/etiología , Adolescente , Adulto , Anciano , Niño , Preescolar , Inmunodeficiencia Variable Común/diagnóstico por imagen , Inmunodeficiencia Variable Común/patología , Inmunodeficiencia Variable Común/terapia , Femenino , Francia , Humanos , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/terapia , Ganglios Linfáticos/patología , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Adulto Joven
7.
Thorax ; 76(2): 201-204, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33177230

RESUMEN

Various forms of diffuse parenchymal lung disease have been proposed as potential consequences of severe COVID­19. We describe the clinical, radiological and histological findings of patients with COVID­19-associated acute respiratory distress syndrome who later developed severe organising pneumonia including longitudinal follow-up. Our findings may have important implications for the therapeutic modalities in the late-phase of severe COVID­19 and might partially explain why a subgroup of COVID­19 patients benefits from systemic corticosteroids.


Asunto(s)
COVID-19/complicaciones , Pulmón/diagnóstico por imagen , Neumonía/etiología , SARS-CoV-2 , Anciano , Biopsia , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Neumonía/diagnóstico , Tomografía Computarizada por Rayos X
8.
Eur Respir J ; 57(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33334946

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare complication of acute pulmonary embolism, either symptomatic or not. The occlusion of proximal pulmonary arteries by fibrotic intravascular material, in combination with a secondary microvasculopathy of vessels <500 µm, leads to increased pulmonary vascular resistance and progressive right heart failure. The mechanism responsible for the transformation of red clots into fibrotic material remnants has not yet been elucidated. In patients with pulmonary hypertension, the diagnosis is suspected when a ventilation/perfusion lung scan shows mismatched perfusion defects, and confirmed by right heart catheterisation and vascular imaging. Today, in addition to lifelong anticoagulation, treatment modalities include surgery, angioplasty and medical treatment according to the localisation and characteristics of the lesions.This statement outlines a review of the literature and current practice concerning diagnosis and management of CTEPH. It covers the definitions, diagnosis, epidemiology, follow-up after acute pulmonary embolism, pathophysiology, treatment by pulmonary endarterectomy, balloon pulmonary angioplasty, drugs and their combination, rehabilitation and new lines of research in CTEPH.It represents the first collaboration of the European Respiratory Society, the International CTEPH Association and the European Reference Network-Lung in the pulmonary hypertension domain. The statement summarises current knowledge, but does not make formal recommendations for clinical practice.


Asunto(s)
Angioplastia de Balón , Hipertensión Pulmonar , Embolia Pulmonar , Enfermedad Crónica , Endarterectomía , Humanos , Arteria Pulmonar
9.
Am J Respir Crit Care Med ; 201(2): 148-157, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31513751

RESUMEN

Pulmonary arterial hypertension (PAH) is a disease characterized by progressive loss and remodeling of the pulmonary arteries, resulting in right heart failure and death. Until recently, PAH was seen as a disease restricted to the pulmonary circulation. However, there is growing evidence that patients with PAH also exhibit systemic vascular dysfunction, as evidenced by impaired brachial artery flow-mediated dilation, abnormal cerebral blood flow, skeletal myopathy, and intrinsic kidney disease. Although some of these anomalies are partially due to right ventricular insufficiency, recent data support a mechanistic link to the genetic and molecular events behind PAH pathogenesis. This review serves as an introduction to the major systemic findings in PAH and the evidence that supports a common mechanistic link with PAH pathophysiology. In addition, it discusses recent studies describing morphological changes in systemic vessels and the possible role of bronchopulmonary anastomoses in the development of plexogenic arteriopathy. On the basis of available evidence, we propose a paradigm in which metabolic abnormalities, genetic injury, and systemic vascular dysfunction contribute to systemic manifestations in PAH. This concept not only opens exciting research possibilities but also encourages clinicians to consider extrapulmonary manifestations in their management of patients with PAH.


Asunto(s)
Trastornos Cerebrovasculares/fisiopatología , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedades Renales/fisiopatología , Enfermedades Musculares/fisiopatología , Hipertensión Arterial Pulmonar/fisiopatología , Disfunción Ventricular Derecha/fisiopatología , Arterias Bronquiales/patología , Arterias Bronquiales/fisiopatología , Circulación Cerebrovascular , Enfermedad de la Arteria Coronaria/metabolismo , Endotelio Vascular/fisiopatología , Humanos , Enfermedades Renales/metabolismo , Enfermedades Musculares/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Músculos Respiratorios/fisiopatología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/fisiopatología , Vasodilatación , Disfunción Ventricular Derecha/metabolismo
10.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502015

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Pulmón/efectos de los fármacos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , ARN Interferente Pequeño/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Células Cultivadas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Terapia Genética , Humanos , Pulmón/metabolismo , Pulmón/patología , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , ARN Interferente Pequeño/uso terapéutico , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/genética , Remodelación Vascular/efectos de los fármacos
11.
Am J Respir Cell Mol Biol ; 63(1): 118-131, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209028

RESUMEN

Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.


Asunto(s)
Enfermedad Veno-Oclusiva Pulmonar/metabolismo , Enfermedad Veno-Oclusiva Pulmonar/patología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Mutación/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Transducción de Señal/fisiología , Factor de Transcripción CHOP/metabolismo
12.
Circulation ; 140(17): 1409-1425, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31462075

RESUMEN

BACKGROUND: Bmpr2 (bone morphogenetic protein receptor 2) mutations are critical risk factors for hereditary pulmonary arterial hypertension (PAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-LO (5-lipoxygenase) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4, are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. METHODS: Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to 1 year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus, monocrotaline, SU5416, SU5416 with chronic hypoxia, or chronic hypoxia alone. Bmpr2-mutant hereditary PAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells with impaired BMPR2 signaling were exposed to increased 5-LO-mediated inflammation and were assessed for phenotypic and transcriptomic changes. RESULTS: Lung inflammation, induced by intratracheal delivery of 5-LO-expressing adenovirus, elicited severe PAH with intimal remodeling in Bmpr2+/- rats but not in their wild-type littermates. Neointimal lesions in the diseased Bmpr2+/- rats gained endogenous 5-LO expression associated with elevated leukotriene B4 biosynthesis. Bmpr2-mutant hereditary PAH patients similarly expressed 5-LO in the neointimal cells. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative pulmonary artery endothelial cells with mesenchymal characteristics. These transformed cells expressed nuclear envelope-localized 5-LO consistent with induced leukotriene B4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated nuclear factor Kappa B subunit (NF-κB), interleukin-6, and transforming growth factor beta (TGF-ß) signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF-ß antagonism suggests that TGF-ß is critical for neointimal transformation. CONCLUSIONS: In a new 2-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF-ß signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced leukotriene B4 production. This study offers an explanation of how an environmental injury unleashes the destructive potential of an otherwise silent genetic mutation.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Inflamación/metabolismo , Neointima/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Animales , Células Endoteliales/metabolismo , Hipertensión Pulmonar/fisiopatología , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas Transgénicas , Transducción de Señal/fisiología
13.
Am J Pathol ; 189(6): 1159-1175, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30926335

RESUMEN

Hepatic veno-occlusive disease (HVOD), alias sinusoidal obstruction syndrome, may develop as a complication of chemotherapy in the setting of hematopoietic stem cell transplantation. HVOD is less frequently described after exposure to chemotherapy in the nontransplant setting and can also be a complication after ingestion of toxins, such as pyrrolizidine alkaloids. Veno-occlusive disease may also affect the lungs, and it is therefore termed pulmonary veno-occlusive disease (PVOD). Similarly, PVOD can develop after exposure to chemotherapeutic agents in the treatment of solid and hematological malignancies. In addition, PVOD has also been linked to autoimmune disorders and occupational solvent exposure. Finally, the heritable form of PVOD is due to biallelic mutations of the EIF2AK4 gene. Both HVOD and PVOD share common histopathological features and pathophysiologic mechanisms. Both clinical disorders are rare complications that can appear after exposure to the common inciting trigger of chemotherapeutic agents. The present review aims to summarize the current knowledge of HVOD and PVOD and to describe both similarities as well as differences regarding both conditions.


Asunto(s)
Enfermedad Veno-Oclusiva Hepática/patología , Enfermedad Veno-Oclusiva Pulmonar/patología , Animales , Diagnóstico Diferencial , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Enfermedad Veno-Oclusiva Hepática/diagnóstico , Enfermedad Veno-Oclusiva Hepática/etiología , Enfermedad Veno-Oclusiva Hepática/terapia , Humanos , Pronóstico , Enfermedad Veno-Oclusiva Pulmonar/diagnóstico , Enfermedad Veno-Oclusiva Pulmonar/etiología , Enfermedad Veno-Oclusiva Pulmonar/terapia , Ratas , Factores de Riesgo
14.
FASEB J ; 33(3): 3670-3679, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30481487

RESUMEN

Heightened pulmonary artery smooth muscle cell (PA-SMC) proliferation and migration and dynamic remodeling of the extracellular matrix are hallmark pathogenic features of pulmonary arterial hypertension (PAH). Pirfenidone (PFD) is an orally bioavailable pyridone derivative with antifibrotic, antiinflammatory, and antioxidative properties currently used in the treatment of idiopathic pulmonary fibrosis. We therefore evaluated the efficacy of curative treatments with PFD in the sugen/hypoxia (SuHx) rat model of severe pulmonary hypertension. Treatment with PFD (30 mg/kg per day by mouth 3 times a day for 3 wk) started 5 wk after sugen injection partially reversed established pulmonary hypertension, reducing total pulmonary vascular resistance and remodeling. Consistent with these observations, we found that continued PFD treatment decreases PA-SMC proliferation and levels of extracellular matrix deposition in lungs and right ventricles in SuHx rats. Importantly, PFD attenuated the proproliferative and promigratory potentials of cultured PA-SMCs from patients with idiopathic PAH and their capacity to produce extracellular matrix components. Finally, we found that PFD dose dependently enhanced forkhead box O1 protein levels and its nuclear translocation in cultured idiopathic PAH PA-SMCs and in PFD-treated SuHx rats. PFD appears to be a potential therapy for PAH worthy of investigation and evaluation for clinical use in conjunction with current PAH treatments.-Poble, P.-B., Phan, C., Quatremare, T., Bordenave, J., Thuillet, R., Cumont, A., Huertas, A., Tu, L., Dorfmüller, P., Humbert, M., Ghigna, M.-R., Savale, L., Guignabert, C. Therapeutic effect of pirfenidone in the sugen/hypoxia rat model of severe pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/fisiopatología , Piridonas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Ratas , Ratas Wistar , Remodelación Vascular/efectos de los fármacos
15.
Circulation ; 137(22): 2371-2389, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29444988

RESUMEN

BACKGROUND: Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS: We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS: We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS: These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.


Asunto(s)
Ácido Glutámico/metabolismo , Hipertensión Pulmonar/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Remodelación Vascular , Animales , Apoptosis/efectos de los fármacos , Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Endotelina-1/farmacología , Humanos , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas , Receptores de Endotelina/química , Receptores de Endotelina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos
16.
Circulation ; 137(9): 910-924, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29167228

RESUMEN

BACKGROUND: The beneficial effects of parasympathetic stimulation have been reported in left heart failure, but whether it would be beneficial for pulmonary arterial hypertension (PAH) remains to be explored. Here, we investigated the relationship between parasympathetic activity and right ventricular (RV) function in patients with PAH, and the potential therapeutic effects of pyridostigmine (PYR), an oral drug stimulating the parasympathetic activity through acetylcholinesterase inhibition, in experimental pulmonary hypertension (PH). METHODS: Heart rate recovery after a maximal cardiopulmonary exercise test was used as a surrogate for parasympathetic activity. RV ejection fraction was assessed in 112 patients with PAH. Expression of nicotinic (α-7 nicotinic acetylcholine receptor) and muscarinic (muscarinic acetylcholine type 2 receptor) receptors, and acetylcholinesterase activity were evaluated in RV (n=11) and lungs (n=7) from patients with PAH undergoing heart/lung transplantation and compared with tissue obtained from controls. In addition, we investigated the effects of PYR (40 mg/kg per day) in experimental PH. PH was induced in male rats by SU5416 (25 mg/kg subcutaneously) injection followed by 4 weeks of hypoxia. In a subgroup, sympathetic/parasympathetic modulation was assessed by power spectral analysis. At week 6, PH status was confirmed by echocardiography, and rats were randomly assigned to vehicle or treatment (both n=12). At the end of the study, echocardiography was repeated, with additional RV pressure-volume measurements, along with lung, RV histological, and protein analyses. RESULTS: Patients with PAH with lower RV ejection fraction (<41%) had a significantly reduced heart rate recovery in comparison with patients with higher RV ejection fraction. In PAH RV samples, α-7 nicotinic acetylcholine receptor was increased and acetylcholinesterase activity was reduced versus controls. No difference in muscarinic acetylcholine type 2 receptor expression was observed. Chronic PYR treatment in PH rats normalized the cardiovascular autonomic function, demonstrated by an increase in parasympathetic activity and baroreflex sensitivity. PYR improved survival, increased RV contractility, and reduced RV stiffness, RV hypertrophy, RV fibrosis, RV inflammation, and RV α-7 nicotinic acetylcholine receptor and muscarinic acetylcholine type 2 receptor expression, as well. Furthermore, PYR reduced pulmonary vascular resistance, RV afterload, and pulmonary vascular remodeling, which was associated with reduced local and systemic inflammation. CONCLUSIONS: RV dysfunction is associated with reduced systemic parasympathetic activity in patients with PAH, with an inadequate adaptive response of the cholinergic system in the RV. Enhancing parasympathetic activity by PYR improved survival, RV function, and pulmonary vascular remodeling in experimental PH.


Asunto(s)
Inhibidores de la Colinesterasa/uso terapéutico , Endotelio Vascular/patología , Hipertensión Pulmonar/metabolismo , Sistema Nervioso Parasimpático , Arteria Pulmonar/patología , Bromuro de Piridostigmina/uso terapéutico , Disfunción Ventricular Derecha/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Remodelación Vascular , Disfunción Ventricular Derecha/tratamiento farmacológico , Función Ventricular Derecha
17.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L445-L455, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30543306

RESUMEN

In this study, we explored the complex interactions between platelet-derived growth factor (PDGF) and N-methyl-d-aspartate receptor (NMDAR) and their effect on the excessive proliferation and migration of smooth muscle cells leading to obstructed arteries in pulmonary arterial hypertension (PAH). We report lower expression of glutamate receptor NMDA-type subunit 2B (GluN2B), a subunit composing NMDARs expected to affect cell survival/proliferation of pulmonary artery smooth muscle cells (PASMCs), in PAH patient lungs. PASMC exposure to PDGF-BB stimulated immediate increased levels of phosphorylated Src family kinases (SFKs) together with increased phosphorylated GluN2B (its active form) and cell surface relocalization, suggesting a cross talk between PDGFR-recruited SFKs and NMDAR. Selective inhibition of PDGFR-ß or SFKs with imatinib or A-419259, respectively, on one hand, or with specific small-interfering RNAs (siRNAs) on the other hand, aborted PDGF-induced phosphorylation of GluN2B, thus validating the pathway. Selective inhibition of GluN2B using Rö25-6981 and silencing with specific siRNA, in the presence of PDGF-BB, significantly increased both migration and proliferation of PASMCs, thus strengthening the functional importance of the pathway. Together, these results indicate that GluN2B-type NMDAR activation may confer to PASMCs antiproliferative and antimigratory properties. The decreased levels of GluN2B observed in PAH pulmonary arteries could mediate the excessive proliferation of PASMCs, thus contributing to medial hyperplasia and PAH development.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Anciano , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Hipertensión Pulmonar/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/metabolismo
18.
Eur Respir J ; 53(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30545970

RESUMEN

Clinical and translational research has played a major role in advancing our understanding of pulmonary hypertension (PH), including pulmonary arterial hypertension and other forms of PH with severe vascular remodelling (e.g. chronic thromboembolic PH and pulmonary veno-occlusive disease). However, PH remains an incurable condition with a high mortality rate, underscoring the need for a better transfer of novel scientific knowledge into healthcare interventions. Herein, we review recent findings in pathology (with the questioning of the strict morphological categorisation of various forms of PH into pre- or post-capillary involvement of pulmonary vessels) and cellular mechanisms contributing to the onset and progression of pulmonary vascular remodelling associated with various forms of PH. We also discuss ways to improve management and to support and optimise drug development in this research field.


Asunto(s)
Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Remodelación Vascular , Animales , Humanos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Venas Pulmonares/metabolismo , Venas Pulmonares/patología , Transducción de Señal/fisiología
19.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1631-1641, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28655554

RESUMEN

Idiopathic pulmonary arterial hypertension (iPAH) is characterized by obstructive hyperproliferation and apoptosis resistance of distal pulmonary artery smooth muscle cells (PASMCs). T-type Ca2+ channel blockers have been shown to reduce experimental pulmonary hypertension, although the impact of T-type channel inhibition remains unexplored in PASMCs from iPAH patients. Here we show that T-type channels Cav3.1 and Cav3.2 are present in the lung and PASMCs from iPAH patients and control subjects. The blockade of T-type channels by the specific blocker, TTA-A2, prevents cell cycle progression and PASMCs growth. In iPAH cells, T-type channel signaling fails to activate phosphatase PP2A, leading to an increase in ERK1/2, P38 activation. Moreover, T-type channel signaling is redirected towards the activation of the kinase Akt1, leading to increased expression of the anti-apoptotic protein survivin, and a decrease in the pro-apoptotic mediator FoxO3A. Finally, in iPAH cells, Akt1 is no longer able to regulate caspase 9 activation, whereas T-type channel overexpression reverses PP2A defect in iPAH cells but reinforces the deleterious effects of Akt1 activation. Altogether, these data highlight T-type channel signaling as a strong trigger of the pathological phenotype of PASMCs from iPAH patients (hyper-proliferation/cells survival and apoptosis resistance), suggesting that both T-type channels and PP2A may be promising therapeutic targets for pulmonary hypertension.


Asunto(s)
Canales de Calcio Tipo T/genética , Hipertensión Pulmonar Primaria Familiar/metabolismo , Proteína Fosfatasa 2/genética , Proteínas Proto-Oncogénicas c-akt/genética , Apoptosis/genética , Bencenoacetamidas/farmacología , Proliferación Celular/genética , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/patología , Proteína Forkhead Box O3/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Miocitos del Músculo Liso/metabolismo , Proteína Fosfatasa 2/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos
20.
Circulation ; 136(21): 2022-2033, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-28972005

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation.


Asunto(s)
Presión Arterial/genética , Hipertensión Pulmonar/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Arteria Pulmonar/fisiopatología , Adulto , Anciano , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Análisis Mutacional de ADN , Europa (Continente) , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Herencia , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Tomografía Computarizada por Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA