RESUMEN
Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.
Asunto(s)
Arginina/química , Proteína FUS de Unión a ARN/química , beta Carioferinas/química , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Citoplasma/metabolismo , Metilación de ADN , ADN Complementario/metabolismo , Densitometría , Degeneración Lobar Frontotemporal/metabolismo , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Espectroscopía de Resonancia Magnética , Metilación , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica , Dominios ProteicosRESUMEN
To elucidate the mechanism driving selective autophagy of protein aggregates, or "aggrephagy," Ma et al. (2022) identify chaperonin TRiC subunit CCT2 as a receptor that specifically promotes the clearance of solid aggregates, but not liquid-like condensates, in a ubiquitin-independent manner.
Asunto(s)
Residuos Sólidos , Ubiquitina , Autofagia , Proteínas Portadoras/metabolismo , Agregado de Proteínas , Ubiquitina/metabolismoRESUMEN
We have made rapid progress in recent years in identifying the genetic causes of many human diseases. However, despite this recent progress, our mechanistic understanding of these diseases is often incomplete. This is a problem because it limits our ability to develop effective disease treatments. To overcome this limitation, we need new concepts to describe and comprehend the complex mechanisms underlying human diseases. Condensate formation by phase separation emerges as a new principle to explain the organization of living cells. In this review, we present emerging evidence that aberrant forms of condensates are associated with many human diseases, including cancer, neurodegeneration, and infectious diseases. We examine disease mechanisms driven by aberrant condensates, and we point out opportunities for therapeutic interventions. We conclude that phase separation provides a useful new framework to understand and fight some of the most severe human diseases.
Asunto(s)
Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Orgánulos/química , Proteínas/química , Proteínas/metabolismo , Humanos , Infecciones/patología , Orgánulos/metabolismo , Orgánulos/patología , SolubilidadRESUMEN
RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
Post-translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA-binding protein TAR DNA-binding protein (TDP-43), is hyperphosphorylated in disease on several C-terminal serine residues, a process generally believed to promote TDP-43 aggregation. Here, we however find that Casein kinase 1δ-mediated TDP-43 hyperphosphorylation or C-terminal phosphomimetic mutations reduce TDP-43 phase separation and aggregation, and instead render TDP-43 condensates more liquid-like and dynamic. Multi-scale molecular dynamics simulations reveal reduced homotypic interactions of TDP-43 low-complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP-43, but suppress accumulation of TDP-43 in membrane-less organelles and promote its solubility in neurons. We speculate that TDP-43 hyperphosphorylation may be a protective cellular response to counteract TDP-43 aggregation.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Agregado de Proteínas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
Dipeptide repeat proteins (DPRs) are aberrant protein species found in C9orf72-linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases characterized by the cytoplasmic mislocalization and aggregation of RNA-binding proteins (RBPs). In particular, arginine (R)-rich DPRs (poly-GR and poly-PR) have been suggested to promiscuously interact with multiple cellular proteins and thereby exert high cytotoxicity. Components of the protein arginine methylation machinery have been identified as modulators of DPR toxicity and/or potential cellular interactors of R-rich DPRs; however, the molecular details and consequences of such an interaction are currently not well understood. Here, we demonstrate that several members of the family of protein arginine methyltransferases (PRMTs) can directly interact with R-rich DPRs in vitro and in the cytosol. In vitro, R-rich DPRs reduce solubility and promote phase separation of PRMT1, the main enzyme responsible for asymmetric arginine-dimethylation (ADMA) in mammalian cells, in a concentration- and length-dependent manner. Moreover, we demonstrate that poly-GR interferes more efficiently than poly-PR with PRMT1-mediated arginine methylation of RBPs such as hnRNPA3. We additionally show by two alternative approaches that poly-GR itself is a substrate for PRMT1-mediated arginine dimethylation. We propose that poly-GR may act as a direct competitor for arginine methylation of cellular PRMT1 targets, such as disease-linked RBPs.
Asunto(s)
Arginina , Proteína-Arginina N-Metiltransferasas , Proteínas de Unión al ARN , Proteínas Represoras , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Arginina/metabolismo , Metilación , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/genética , Células HEK293RESUMEN
TDP-43-positive inclusions in neurons are a hallmark of several neurodegenerative diseases including familial amyotrophic lateral sclerosis (fALS) caused by pathogenic TARDBP variants as well as more common non-Mendelian sporadic ALS (sALS). Here we report a G376V-TDP-43 missense variant in the C-terminal prion-like domain of the protein in two French families affected by an autosomal dominant myopathy but not fulfilling diagnostic criteria for ALS. Patients from both families presented with progressive weakness and atrophy of distal muscles, starting in their 5th-7th decade. Muscle biopsies revealed a degenerative myopathy characterized by accumulation of rimmed (autophagic) vacuoles, disruption of sarcomere integrity and severe myofibrillar disorganization. The G376â V variant altered a highly conserved amino acid residue and was absent in databases on human genome variation. Variant pathogenicity was supported by in silico analyses and functional studies. The G376â V mutant increased the formation of cytoplasmic TDP-43 condensates in cell culture models, promoted assembly into high molecular weight oligomers and aggregates in vitro, and altered morphology of TDP-43 condensates arising from phase separation. Moreover, the variant led to the formation of cytoplasmic TDP-43 condensates in patient-derived myoblasts and induced abnormal mRNA splicing in patient muscle tissue. The identification of individuals with TDP-43-related myopathy but not ALS implies that TARDBP missense variants may have more pleiotropic effects than previously anticipated and support a primary role for TDP-43 in skeletal muscle pathophysiology. We propose to include TARDBP screening in the genetic work-up of patients with late-onset distal myopathy. Further research is warranted to examine the precise pathogenic mechanisms of TARDBP variants causing either a neurodegenerative or myopathic phenotype.
RESUMEN
Liquid-liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein Fused in Sarcoma (FUS) undergoes LLPS and mutations in FUS have been causally linked to the motor neuron disease Amyotrophic Lateral Sclerosis (ALS-FUS). LLPS followed by aggregation of cytoplasmic FUS has been proposed to be a crucial disease mechanism. However, it is currently unclear how LLPS impacts the behaviour of FUS in cells, e.g. its interactome. Hence, we developed a method allowing for the purification of LLPS FUS-containing droplets from cell lysates. We observe substantial alterations in the interactome, depending on its biophysical state. While non-LLPS FUS interacts mainly with factors involved in pre-mRNA processing, LLPS FUS predominantly binds to proteins involved in chromatin remodelling and DNA damage repair. Interestingly, also mitochondrial factors are strongly enriched with LLPS FUS, providing a potential explanation for the observed changes in mitochondrial gene expression in mouse models of ALS-FUS. In summary, we present a methodology to investigate the interactomes of phase separating proteins and provide evidence that LLPS shapes the FUS interactome with implications for function and disease.
Asunto(s)
Proteína FUS de Unión a ARN/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Mapeo de Interacción de Proteínas , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/aislamiento & purificaciónRESUMEN
The specific interaction of importins with nuclear localization signals (NLSs) of cargo proteins not only mediates nuclear import but also, prevents their aberrant phase separation and stress granule recruitment in the cytoplasm. The importin Transportin-1 (TNPO1) plays a key role in the (patho-)physiology of both processes. Here, we report that both TNPO1 and Transportin-3 (TNPO3) recognize two nonclassical NLSs within the cold-inducible RNA-binding protein (CIRBP). Our biophysical investigations show that TNPO1 recognizes an arginine-glycine(-glycine) (RG/RGG)-rich region, whereas TNPO3 recognizes a region rich in arginine-serine-tyrosine (RSY) residues. These interactions regulate nuclear localization, phase separation, and stress granule recruitment of CIRBP in cells. The presence of both RG/RGG and RSY regions in numerous other RNA-binding proteins suggests that the interaction of TNPO1 and TNPO3 with these nonclassical NLSs may regulate the formation of membraneless organelles and subcellular localization of numerous proteins.
Asunto(s)
Núcleo Celular/metabolismo , Señales de Localización Nuclear , Fragmentos de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Arginina/química , Arginina/metabolismo , Citoplasma/metabolismo , Glicina/química , Glicina/metabolismo , Células HeLa , Humanos , Fragmentos de Péptidos/química , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/química , Serina/química , Serina/metabolismo , Tirosina/química , Tirosina/metabolismo , beta Carioferinas/químicaRESUMEN
Defects in nucleocytoplasmic transport have been associated with several neurodegenerative disorders and, in particular, the formation of pathological protein aggregates characteristic for the respective disease. However, whether impaired nucleocytoplasmic transport is a consequence of such aggregates or rather contributes to their formation is still mostly unclear. In this review, we summarize recent findings how both soluble and stationary components of the nucleocytoplasmic transport machinery are altered in neurodegenerative diseases, in particular amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD) and Huntington's disease (HD). We discuss the functional significance of the observed defects for nucleocytoplasmic transport of proteins and mRNAs. Moreover, we highlight interesting parallels observed in physiological ageing and the premature ageing syndrome progeria and propose that they that might provide mechanistic insights also for neurodegenerative processes.
Asunto(s)
Transporte Activo de Núcleo Celular , Enfermedades Neurodegenerativas/metabolismo , HumanosRESUMEN
Fused in sarcoma (FUS) is a predominantly nuclear RNA-binding protein with key functions in RNA processing and DNA damage repair. Defects in nuclear import of FUS have been linked to severe neurodegenerative diseases; hence, it is of great interest to understand this process and how it is dysregulated in disease. Transportin-1 (TNPO1) and the closely related transportin-2 have been identified as major nuclear import receptors of FUS. They bind to the C-terminal nuclear localization signal of FUS and mediate the protein's nuclear import and at the same time also suppress aberrant phase transitions of FUS in the cytoplasm. Whether FUS can utilize other nuclear transport receptors for the purpose of import and chaperoning has not been examined so far. Here, we show that FUS directly binds to different import receptors in vitro. FUS formed stable complexes not only with TNPO1 but also with transportin-3, importin ß, importin 7, or the importin ß/7 heterodimer. Binding of these alternative import receptors required arginine residues within FUS-RG/RGG motifs and was weakened by arginine methylation. Interaction with these importins suppressed FUS phase separation and reduced its sequestration into stress granules. In a permeabilized cell system, we further showed that transportin-3 had the capacity to import FUS into the nucleus, albeit with lower efficiency than TNPO1. Our data suggest that aggregation-prone RNA-binding proteins such as FUS may utilize a network of importins for chaperoning and import, similar to histones and ribosomal proteins.
Asunto(s)
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , beta Carioferinas/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Carioferinas/genética , Chaperonas Moleculares/genética , Señales de Localización Nuclear , Unión Proteica , Proteína FUS de Unión a ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , beta Carioferinas/genéticaRESUMEN
Ribonucleoprotein (RNP) granules are membrane-less organelles consisting of RNA-binding proteins (RBPs) and RNA. RNA granules form through liquid-liquid phase separation (LLPS), whereby weak promiscuous interactions among RBPs and/or RNAs create a dense network of interacting macromolecules and drive the phase separation. Post-translational modifications (PTMs) of RBPs have emerged as important regulators of LLPS and RNP granule dynamics, as they can directly weaken or enhance the multivalent interactions between phase-separating macromolecules or can recruit or exclude certain macromolecules into or from condensates. Here, we review recent insights into how PTMs regulate phase separation and RNP granule dynamics, in particular arginine (Arg)-methylation and phosphorylation. We discuss how these PTMs regulate the phase behavior of prototypical RBPs and how, as "friend or foe," they might influence the assembly, disassembly, or material properties of cellular RNP granules, such as stress granules or amyloid-like condensates. We particularly highlight how PTMs control the phase separation and aggregation behavior of disease-linked RBPs. We also review how disruptions of PTMs might be involved in aberrant phase transitions and the formation of amyloid-like protein aggregates as observed in neurodegenerative diseases.
Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Procesamiento Proteico-Postraduccional , Ribonucleoproteínas/metabolismo , Células HeLa , Humanos , Metilación , Orgánulos/metabolismo , Transición de Fase , FosforilaciónRESUMEN
Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.
Asunto(s)
Daño del ADN/fisiología , Neuronas Motoras/enzimología , Proteína-Arginina N-Metiltransferasas/fisiología , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Contracción Isométrica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Musculares/enzimología , Células Musculares/fisiología , Unión Neuromuscular/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/deficiencia , Proteína-Arginina N-Metiltransferasas/genética , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Reflejo Anormal , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/citología , Médula Espinal/crecimiento & desarrolloRESUMEN
A repeat expansion in the non-coding region of C9orf72 gene is the most common mutation causing frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Sense and antisense transcripts are translated into aggregating dipeptide repeat (DPR) proteins in all reading frames (poly-GA,-GP,-GR,-PA and -PR) through an unconventional mechanism. How these changes contribute to cytoplasmic mislocalization and aggregation of TDP-43 and thereby ultimately leading to neuron loss remains unclear. The repeat RNA itself and poly-GR/PR have been linked to impaired nucleocytoplasmic transport. Here, we show that compact cytoplasmic poly-GA aggregates impair nuclear import of a reporter containing the TDP-43 nuclear localization (NLS) signal. However, a reporter containing a non-classical PY-NLS was not affected. Moreover, poly-GA expression prevents TNFα induced nuclear translocation of p65 suggesting that poly-GA predominantly impairs the importin-α/ß-dependent pathway. In neurons, prolonged poly-GA expression induces partial mislocalization of TDP-43 into cytoplasmic granules. Rerouting poly-GA to the nucleus prevented TDP-43 mislocalization, suggesting a cytoplasmic mechanism. In rescue experiments, expression of importin-α (KPNA3, KPNA4) or nucleoporins (NUP54, NUP62) restores the nuclear localization of the TDP reporter. Taken together, inhibition of nuclear import of TDP-43 by cytoplasmic poly-GA inclusions causally links the two main aggregating proteins in C9orf72 ALS/FTLD pathogenesis.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Expansión de las Repeticiones de ADN , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72 , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas/genética , Ratas , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismoRESUMEN
Motor neuron-extrinsic mechanisms have been shown to participate in the pathogenesis of ALS-SOD1, one familial form of amyotrophic lateral sclerosis (ALS). It remains unclear whether such mechanisms contribute to other familial forms, such as TDP-43 and FUS-associated ALS. Here, we characterize a single-copy mouse model of ALS-FUS that conditionally expresses a disease-relevant truncating FUS mutant from the endogenous murine Fus gene. We show that these mice, but not mice heterozygous for a Fus null allele, develop similar pathology as ALS-FUS patients and a mild motor neuron phenotype. Most importantly, CRE-mediated rescue of the Fus mutation within motor neurons prevented degeneration of motor neuron cell bodies, but only delayed appearance of motor symptoms. Indeed, we observed downregulation of multiple myelin-related genes, and increased numbers of oligodendrocytes in the spinal cord supporting their contribution to behavioral deficits. In all, we show that mutant FUS triggers toxic events in both motor neurons and neighboring cells to elicit motor neuron disease.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Axones/metabolismo , Axones/patología , Citoplasma/metabolismo , Citoplasma/patología , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas Motoras/patología , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/genética , Médula Espinal/metabolismo , Médula Espinal/patologíaRESUMEN
In neurons, RNA-binding proteins (RBPs) play a key role in post-transcriptional gene regulation, for example alternative splicing, mRNA localization in neurites and local translation upon synaptic stimulation. There is increasing evidence that defective or mislocalized RBPs - and consequently altered mRNA processing - lead to neuronal dysfunction and cause neurodegeneration, including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Cytosolic RBP aggregates containing TAR DNA-binding protein of 43 kDa (TDP-43) or fused in sarcoma (FUS) are a common hallmark of both disorders. There is mounting evidence that translationally silent mRNP granules, such as stress granules or transport granules, play an important role in the formation of these RBP aggregates. These granules are thought to be 'catalytic convertors' of RBP aggregation by providing a high local concentration of RBPs. As recently shown in vitro, RBPs that contain a so-called low-complexity domain start to 'solidify' and eventually aggregate at high protein concentrations. The same may happen in mRNP granules in vivo, leading to 'solidified' granules that lose their dynamic properties and ability to fulfill their physiological functions. This may result in a disturbed stress response, altered mRNA transport and local translation, and formation of pathological TDP-43 or FUS aggregates, all of which may contribute to neuronal dysfunction and neurodegeneration. Here, we discuss the general functional properties of these mRNP granules, how their dynamics may be disrupted in frontotemporal lobar degeneration/amyotrophic lateral sclerosis, for example by loss or gain of function of TDP-43 and FUS, and how this may contribute to the development of RBP aggregates and neurotoxicity. In this review, we discuss how dynamic mRNP granules, such as stress granules or neuronal transport granules, may be converted into pathological aggregates containing misfolded RNA-binding proteins (RBPs), such as TDP-43 and FUS. Abnormal interactions between low-complexity domains in RBPs may cause dynamic mRNP granules to solidify and become dysfunctional. This may result in a disturbed stress response, altered mRNA transport and local translation, as well as RBP aggregation, all of which may contribute to neuronal dysfunction and neurodegeneration.
Asunto(s)
Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/patología , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Partículas Ribonucleoproteicas en Bóveda/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Humanos , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo , Partículas Ribonucleoproteicas en Bóveda/metabolismoRESUMEN
Fused in sarcoma (FUS) is a nuclear protein that carries a proline-tyrosine nuclear localization signal (PY-NLS) and is imported into the nucleus via Transportin (TRN). Defects in nuclear import of FUS have been implicated in neurodegeneration, since mutations in the PY-NLS of FUS cause amyotrophic lateral sclerosis (ALS). Moreover, FUS is deposited in the cytosol in a subset of frontotemporal lobar degeneration (FTLD) patients. Here, we show that arginine methylation modulates nuclear import of FUS via a novel TRN-binding epitope. Chemical or genetic inhibition of arginine methylation restores TRN-mediated nuclear import of ALS-associated FUS mutants. The unmethylated arginine-glycine-glycine domain preceding the PY-NLS interacts with TRN and arginine methylation in this domain reduces TRN binding. Inclusions in ALS-FUS patients contain methylated FUS, while inclusions in FTLD-FUS patients are not methylated. Together with recent findings that FUS co-aggregates with two related proteins of the FET family and TRN in FTLD-FUS but not in ALS-FUS, our study provides evidence that these two diseases may be initiated by distinct pathomechanisms and implicates alterations in arginine methylation in pathogenesis.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Arginina/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Señales de Localización Nuclear/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Degeneración Lobar Frontotemporal/metabolismo , Silenciador del Gen , Células HeLa , Humanos , Carioferinas/genética , Metilación , Datos de Secuencia Molecular , Prolina/metabolismo , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína FUS de Unión a ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Tirosina/metabolismoRESUMEN
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is currently unclear. Based on our previous finding that FUS deposits are hypomethylated in FTLD-FUS but not in ALS-FUS, we have now investigated whether genetic or pharmacological inactivation of Protein arginine methyltransferase 1 (PRMT1) activity results in unmethylated FUS or in alternatively methylated forms of FUS. To do so, we generated FUS-specific monoclonal antibodies that specifically recognize unmethylated arginine (UMA), monomethylated arginine (MMA) or asymmetrically dimethylated arginine (ADMA). Loss of PRMT1 indeed not only results in an increase of UMA FUS and a decrease of ADMA FUS, but also in a significant increase of MMA FUS. Compared to ADMA FUS, UMA and MMA FUS exhibit much higher binding affinities to Transportin-1, the nuclear import receptor of FUS, as measured by pull-down assays and isothermal titration calorimetry. Moreover, we show that MMA FUS occurs exclusively in FTLD-FUS, but not in ALS-FUS. Our findings therefore provide additional evidence that FTLD-FUS and ALS-FUS are caused by distinct disease mechanisms although both share FUS deposits as a common denominator.