Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(2): 218-231, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643268

RESUMEN

Regulatory T cells (Treg cells) can activate multiple suppressive mechanisms in vitro after activation via the T cell antigen receptor, resulting in antigen-independent suppression. However, it remains unclear whether similar pathways operate in vivo. Here we found that antigen-specific Treg cells activated by dendritic cells (DCs) pulsed with two antigens suppressed conventional naive T cells (Tnaive cells) specific for both cognate antigens and non-cognate antigens in vitro but suppressed only Tnaive cells specific for cognate antigen in vivo. Antigen-specific Treg cells formed strong interactions with DCs, resulting in selective inhibition of the binding of Tnaive cells to cognate antigen yet allowing bystander Tnaive cell access. Strong binding resulted in the removal of the complex of cognate peptide and major histocompatibility complex class II (pMHCII) from the DC surface, reducing the capacity of DCs to present antigen. The enhanced binding of Treg cells to DCs, coupled with their capacity to deplete pMHCII, represents a novel pathway for Treg cell-mediated suppression and may be a mechanism by which Treg cells maintain immune homeostasis.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Tolerancia Inmunológica/inmunología , Linfocitos T Reguladores/inmunología , Animales , Efecto Espectador/inmunología , Células Cultivadas , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Péptidos/inmunología , Cultivo Primario de Células , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T Reguladores/metabolismo
2.
Nat Immunol ; 19(3): 255-266, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29476183

RESUMEN

Key events in T cell-dependent antibody responses, including affinity maturation, are dependent on the B cell's presentation of antigen to helper T cells at critical checkpoints in germinal-center formation in secondary lymphoid organs. Here we found that signaling via Toll-like receptor 9 (TLR9) blocked the ability of antigen-specific B cells to capture, process and present antigen and to activate antigen-specific helper T cells in vitro. In a mouse model in vivo and in a human clinical trial, the TLR9 agonist CpG enhanced the magnitude of the antibody response to a protein vaccine but failed to promote affinity maturation. Thus, TLR9 signaling might enhance antibody titers at the expense of the ability of B cells to engage in germinal-center events that are highly dependent on B cells' capture and presentation of antigen.


Asunto(s)
Formación de Anticuerpos/inmunología , Presentación de Antígeno/genética , Activación de Linfocitos/inmunología , Receptor Toll-Like 9/inmunología , Animales , Afinidad de Anticuerpos , Centro Germinal/inmunología , Humanos , Vacunas contra la Malaria , Ratones , Receptor Toll-Like 9/agonistas
3.
Nat Immunol ; 19(8): 871-884, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988090

RESUMEN

B cells are activated by two temporally distinct signals, the first provided by the binding of antigen to the B cell antigen receptor (BCR), and the second provided by helper T cells. Here we found that B cells responded to antigen by rapidly increasing their metabolic activity, including both oxidative phosphorylation and glycolysis. In the absence of a second signal, B cells progressively lost mitochondrial function and glycolytic capacity, which led to apoptosis. Mitochondrial dysfunction was a result of the gradual accumulation of intracellular calcium through calcium response-activated calcium channels that, for approximately 9 h after the binding of B cell antigens, was preventable by either helper T cells or signaling via the receptor TLR9. Thus, BCR signaling seems to activate a metabolic program that imposes a limited time frame during which B cells either receive a second signal and survive or are eliminated.


Asunto(s)
Linfocitos B/fisiología , Mitocondrias/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Receptor Toll-Like 9/metabolismo , Animales , Apoptosis , Calcio/metabolismo , Canales de Calcio/metabolismo , Citocinas/metabolismo , Glucólisis , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células 3T3 NIH , Fosforilación Oxidativa , Receptores de Antígenos de Linfocitos B/genética , Transducción de Señal , Receptor Toll-Like 9/genética
4.
Mol Cell ; 62(1): 21-33, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058785

RESUMEN

The inhibitory function of killer cell immunoglobulin-like receptors (KIR) that bind HLA-C and block activation of human natural killer (NK) cells is dependent on zinc. We report that zinc induced the assembly of soluble KIR into filamentous polymers, as detected by electron microscopy, which depolymerized after zinc chelation. Similar KIR filaments were isolated from lysates of cells treated with zinc, and membrane protrusions enriched in zinc were detected on whole cells by scanning electron microscopy and imaging mass spectrometry. Two independent mutations in the extracellular domain of KIR, away from the HLA-C binding site, impaired zinc-driven polymerization and inhibitory function. KIR filaments formed spontaneously, without the addition of zinc, at functional inhibitory immunological synapses of NK cells with HLA-C(+) cells. Adding to the recent paradigm of signal transduction through higher order molecular assemblies, zinc-induced polymerization of inhibitory KIR represents an unusual mode of signaling by a receptor at the cell surface.


Asunto(s)
Células Asesinas Naturales/inmunología , Receptores KIR/química , Receptores KIR/metabolismo , Zinc/farmacología , Células Cultivadas , Células HEK293 , Antígenos HLA/metabolismo , Humanos , Sinapsis Inmunológicas/metabolismo , Polimerizacion , Receptores KIR/genética , Transducción de Señal
5.
Proc Natl Acad Sci U S A ; 117(1): 522-531, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871169

RESUMEN

Interleukin 15 (IL-15) is an essential cytokine for the survival and proliferation of natural killer (NK) cells. IL-15 activates signaling by the ß and common γ (γc) chain heterodimer of the IL-2 receptor through trans-presentation by cells expressing IL-15 bound to the α chain of the IL-15 receptor (IL-15Rα). We show here that membrane-associated IL-15Rα-IL-15 complexes are transferred from presenting cells to NK cells through trans-endocytosis and contribute to the phosphorylation of ribosomal protein S6 and NK cell proliferation. NK cell interaction with soluble or surface-bound IL-15Rα-IL-15 complex resulted in Stat5 phosphorylation and NK cell survival at a concentration or density of the complex much lower than required to stimulate S6 phosphorylation. Despite this efficient response, Stat5 phosphorylation was reduced after inhibition of metalloprotease-induced IL-15Rα-IL-15 shedding from trans-presenting cells, whereas S6 phosphorylation was unaffected. Conversely, inhibition of trans-endocytosis by silencing of the small GTPase TC21 or expression of a dominant-negative TC21 reduced S6 phosphorylation but not Stat5 phosphorylation. Thus, trans-endocytosis of membrane-associated IL-15Rα-IL-15 provides a mode of regulating NK cells that is not afforded to IL-2 and is distinct from activation by soluble IL-15. These results may explain the strict IL-15 dependence of NK cells and illustrate how the cellular compartment in which receptor-ligand interaction occurs can influence functional outcome.


Asunto(s)
Proliferación Celular , Células Dendríticas/metabolismo , Subunidad alfa del Receptor de Interleucina-15/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/fisiología , Comunicación Celular/fisiología , Línea Celular , Endocitosis/fisiología , Voluntarios Sanos , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación/fisiología , Cultivo Primario de Células , Proteína S6 Ribosómica/metabolismo
6.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651356

RESUMEN

Human respiratory syncytial virus (RSV) is a major pediatric respiratory pathogen. The attachment (G) and fusion (F) glycoproteins are major neutralization and protective antigens. RSV G is expressed as membrane-anchored (mG) and -secreted (sG) forms, both containing a central fractalkine-like CX3C motif. The CX3C motif and sG are thought to interfere with host immune responses and have been suggested to be omitted from a vaccine. We used a chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express RSV wild-type (wt) G and modified forms, including sG alone, mG alone, mutants with ablated CX3C, and G with enhanced packaging into vector virions. In hamsters, these viruses replicated to similar titers. When assayed with a complement-enhanced neutralization assay in Vero cells, sG did not reduce the serum RSV- or PIV3-neutralizing antibody (NAb) responses, whereas ablating CX3C drastically reduced the RSV NAb response. Protective efficacy against RSV challenge was not reduced by sG but was strongly dependent on the CX3C motif. In ciliated human airway epithelial (HAE) cells, NAbs induced by wt G, but not by wt F, completely blocked RSV infection in the absence of added complement. This activity was dependent on the integrity of the CX3C motif. In hamsters, the rB/HPIV3 expressing wt G conferred better protection against RSV challenge than that expressing wt F. Codon optimization of the wt G further increased its immunogenicity and protective efficacy. This study showed that ablation of the CX3C motif or sG in an RSV vaccine, as has been suggested previously, would be ill advised.IMPORTANCE Human RSV is the leading viral cause of severe pediatric respiratory illness. An RSV vaccine is not yet available. The RSV attachment protein G is an important protective and neutralization antigen. G contains a conserved fractalkine-like CX3C motif and is expressed in mG and sG forms. sG and the CX3C motif are thought to interfere with host immune responses, but this remains poorly characterized. Here, we used an attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express various modified forms of RSV G. We demonstrated that strong antibody and protective responses could be induced by G alone, and that this was highly dependent on the integrity of the CX3C motif. There was no evidence that sG or the CX3C motif impaired immune responses against RSV G or the rB/HPIV3 vector. rB/HPIV3 expressing wt RSV G provides a bivalent vaccine against RSV and HPIV3.


Asunto(s)
Vectores Genéticos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Respirovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bovinos , Niño , Chlorocebus aethiops , Femenino , Humanos , Macaca mulatta , Mesocricetus , Infecciones por Virus Sincitial Respiratorio/virología , Células Vero , Proteínas Virales de Fusión/inmunología , Virión/inmunología , Replicación Viral/inmunología
7.
J Immunol ; 201(10): 2879-2884, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30315139

RESUMEN

Early secretion of IL-12 by mouse dendritic cells (DCs) instructs T cells to make IFN-γ. However, only activated, but not naive T cells are able to license DCs for IL-12 production. We hypothesized that it might be due to different levels of CD40L expression on the surface of these cells, as CD40 signals are required for IL-12 production. Using quantitative cell-free systems incorporating CD40L in lipid bilayers combined with total internal reflection fluorescence microscopy and flow cytometry, we show that as low as ∼200 CD40L molecules/µm2 in combination with IL-4 is sufficient to induce IL-12 production by DCs. Remarkably, CD40L alone is adequate to induce IL-23 secretion by DCs. Thus, although activated T cells have somewhat higher levels of CD40L, it is the combination of CD40L and the cytokines they secrete that licenses DCs and influences the effector class of the immune response.


Asunto(s)
Ligando de CD40/inmunología , Células Dendríticas/inmunología , Interleucina-12/biosíntesis , Interleucina-23/biosíntesis , Activación de Linfocitos/inmunología , Animales , Células Dendríticas/metabolismo , Interleucina-12/inmunología , Interleucina-23/inmunología , Ratones , Ratones Transgénicos
8.
J Immunol ; 201(11): 3294-3306, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30373851

RESUMEN

Activation of CD4+ T cells to proliferate drives cells toward aerobic glycolysis for energy production while using mitochondria primarily for macromolecular synthesis. In addition, the mitochondria of activated T cells increase production of reactive oxygen species, providing an important second messenger for intracellular signaling pathways. To better understand the critical changes in mitochondria that accompany prolonged T cell activation, we carried out an extensive analysis of mitochondrial remodeling using a combination of conventional strategies and a novel high-resolution imaging method. We show that for 4 d following activation, mouse CD4+ T cells sustained their commitment to glycolysis facilitated by increased glucose uptake through increased expression of GLUT transporters. Despite their limited contribution to energy production, mitochondria were active and showed increased reactive oxygen species production. Moreover, prolonged activation of CD4+ T cells led to increases in mitochondrial content and volume, in the number of mitochondria per cell and in mitochondrial biogenesis. Thus, during prolonged activation, CD4+ T cells continue to obtain energy predominantly from glycolysis but also undergo extensive mitochondrial remodeling, resulting in increased mitochondrial activity.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Animales , Células Cultivadas , Metabolismo Energético , Femenino , Glucólisis , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
9.
Malar J ; 17(1): 391, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367653

RESUMEN

BACKGROUND: Artemisinin-resistant Plasmodium falciparum has been reported throughout the Greater Mekong subregion and threatens to disrupt current malaria control efforts worldwide. Polymorphisms in kelch13 have been associated with clinical and in vitro resistance phenotypes; however, several studies suggest that the genetic determinants of resistance may involve multiple genes. Current proposed mechanisms of resistance conferred by polymorphisms in kelch13 hint at a connection to an autophagy-like pathway in P. falciparum. RESULTS: A SNP in autophagy-related gene 18 (atg18) was associated with long parasite clearance half-life in patients following artemisinin-based combination therapy. This gene encodes PfAtg18, which is shown to be similar to the mammalian/yeast homologue WIPI/Atg18 in terms of structure, binding abilities, and ability to form puncta in response to stress. To investigate the contribution of this polymorphism, the atg18 gene was edited using CRISPR/Cas9 to introduce a T38I mutation into a k13-edited Dd2 parasite. The presence of this SNP confers a fitness advantage by enabling parasites to grow faster in nutrient-limited settings. The mutant and parent parasites were screened against drug libraries of 6349 unique compounds. While the SNP did not modulate the parasite's susceptibility to any of the anti-malarial compounds using a 72-h drug pulse, it did alter the parasite's susceptibility to 227 other compounds. CONCLUSIONS: These results suggest that the atg18 T38I polymorphism may provide additional resistance against artemisinin derivatives, but not partner drugs, even in the absence of kelch13 mutations, and may also be important in parasite survival during nutrient deprivation.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Proteínas Relacionadas con la Autofagia/genética , Resistencia a Medicamentos , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia/química , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/química , Alineación de Secuencia
10.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28320834

RESUMEN

Granulibacter bethesdensis is a Gram-negative bacterium that infects patients with chronic granulomatous disease (CGD), a primary immunodeficiency marked by a defect in NOX2, the phagocyte NADPH oxidase. Previous studies have shown that NOX2 is essential for killing of G. bethesdensis by neutrophils and monocytes and that the bacteriostatic activity of monocyte-derived macrophages (MDM) requires NOX2 and gamma interferon (IFN-γ) pretreatment. To determine whether G. bethesdensis evades phagolysosomal killing, a host defense pathway intact in both normal and CGD MDM, or whether it occupies a distinct intracellular niche in CGD MDM, we assessed the trafficking patterns of this organism. We observed colocalization of G. bethesdensis with an early endosome antigen 1 (EEA1)-positive compartment, followed by colocalization with lysosome-associated membrane protein 1 (LAMP1)-positive and LysoTracker-positive late phagosomes; these characteristics were similar in both normal and CGD MDM. Despite localization to acidified late phagosomes, viable G. bethesdensis cells were recovered from viable MDM in numbers greater than in the initial input up to 6 days after infection. G. bethesdensis remains, and in some cases appears to divide, within a membrane-bound compartment for the entire 6-day time course. These findings indicate that this organism resists both oxygen-dependent and oxygen-independent phagolysosomal antimicrobial systems of human macrophages.


Asunto(s)
Acetobacteraceae/patogenicidad , Infecciones por Bacterias Gramnegativas/microbiología , Enfermedad Granulomatosa Crónica/microbiología , Macrófagos/microbiología , Enfermedad Granulomatosa Crónica/complicaciones , Humanos , Interferón gamma/inmunología , Proteínas de Membrana de los Lisosomas/metabolismo , Macrófagos/ultraestructura , Glicoproteínas de Membrana/metabolismo , Microscopía Electrónica de Transmisión , Monocitos/microbiología , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , Neutrófilos/microbiología , Fagocitosis , Fagosomas/inmunología , Fagosomas/microbiología , Proteínas de Transporte Vesicular/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-28115349

RESUMEN

Klebsiella pneumoniae is a prominent cause of nosocomial infections worldwide. Bloodstream infections caused by carbapenem-resistant K. pneumoniae, including the epidemic lineage known as multilocus sequence type 258 (ST258), are difficult to treat, and the rate of mortality from such infections is high. Thus, it is imperative that we gain a better understanding of host defense against this pathogen as a step toward developing novel therapies. Here we tested the hypothesis that the resistance of ST258 to bactericidal components of human blood, such as serum complement, is linked to virulence capacity in the context of bacteremia. There was significant variance in the survival of ST258 clinical isolates in heparinized human blood or normal human serum. The rate of survival of ST258 isolates in human blood was, in general, similar to that in normal human serum, suggesting a prominent role for complement (rather than leukocytes) in the healthy host defense against ST258 isolates and related organisms. Indeed, deposition of serum complement-the C5b to C9 (C5b-C9) membrane attack complex-onto the surface of ST258 isolates accompanied serum bactericidal activity. Human serum treated with pharmacological inhibitors of complement, depleted of antibody, or heated at 56°C for 30 min had significantly reduced or absent bactericidal activity. In contrast to heparinized blood from humans, that from BALB/c mice lacked bactericidal activity toward the ST258 isolates tested, but the virulence of these ST258 isolates in a mouse bacteremia model was inexplicably limited. Our data highlight the importance of the complement system in host defense against ST258 bacteremia, and we propose that there is the potential to enhance complement-mediated bactericidal activity using an antibody-based approach.


Asunto(s)
Antibacterianos/farmacología , Carbapenémicos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Animales , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Carbapenémicos/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Klebsiella pneumoniae/genética , Ratones , Ratones Endogámicos BALB C , Tipificación de Secuencias Multilocus , Virulencia/genética
12.
J Virol ; 90(21): 10022-10038, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581977

RESUMEN

Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


Asunto(s)
Anticuerpos Neutralizantes/genética , Vectores Genéticos/genética , Virus de la Parainfluenza 3 Bovina/genética , Virus de la Parainfluenza 3 Humana/genética , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Cápside/metabolismo , Bovinos , Línea Celular , Chlorocebus aethiops , Cricetinae , Humanos , Macaca mulatta , Virus de la Parainfluenza 3 Bovina/inmunología , Virus de la Parainfluenza 3 Humana/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/genética , Vacunas contra Virus Sincitial Respiratorio/inmunología , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Células Vero , Proteínas Virales de Fusión/inmunología , Replicación Viral/genética
13.
J Infect Dis ; 213(10): 1615-22, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26768252

RESUMEN

Carbapenem-resistant Klebsiella pneumoniae strains classified as multilocus sequence type 258 (ST258) are among the most widespread multidrug-resistant hospital-acquired pathogens. Treatment of infections caused by these organisms is difficult, and mortality is high. The basis for the success of ST258, outside of antibiotic resistance, remains incompletely determined. Here we tested the hypothesis that ST258K. pneumoniae has enhanced capacity to circumvent killing by human neutrophils, the primary cellular defense against bacterial infections. There was limited binding and uptake of ST258 by human neutrophils, and correspondingly, there was limited killing of bacteria. On the other hand, transmission electron microscopy revealed that any ingested organisms were degraded readily within neutrophil phagosomes, thus indicating that survival in the neutrophil assays is due to limited phagocytosis, rather than to microbicide resistance after uptake. Our findings suggest that enhancing neutrophil phagocytosis is a potential therapeutic approach for treatment of infection caused by carbapenem-resistant ST258K. pneumoniae.


Asunto(s)
Carbapenémicos/farmacología , Infecciones por Klebsiella/terapia , Klebsiella pneumoniae/inmunología , Neutrófilos/microbiología , Fagocitosis , Animales , Técnicas de Tipificación Bacteriana , Farmacorresistencia Bacteriana , Femenino , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus , Neutrófilos/inmunología , Neutrófilos/metabolismo , Conejos , Especies Reactivas de Oxígeno/metabolismo
14.
J Biol Chem ; 290(2): 1119-28, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25416779

RESUMEN

The structure of the infectious form of prion protein, PrP(Sc), remains unclear. Most pure recombinant prion protein (PrP) amyloids generated in vitro are not infectious and lack the extent of the protease-resistant core and solvent exclusion of infectious PrP(Sc), especially within residues ∼90-160. Polyanionic cofactors can enhance infectivity and PrP(Sc)-like characteristics of such fibrils, but the mechanism of this enhancement is unknown. In considering structural models of PrP(Sc) multimers, we identified an obstacle to tight packing that might be overcome with polyanionic cofactors, namely, electrostatic repulsion between four closely spaced cationic lysines within a central lysine cluster of residues 101-110. For example, in our parallel in-register intermolecular ß-sheet model of PrP(Sc), not only would these lysines be clustered within the 101-110 region of the primary sequence, but they would have intermolecular spacings of only ∼4.8 Å between stacked ß-strands. We have now performed molecular dynamics simulations predicting that neutralization of the charges on these lysine residues would allow more stable parallel in-register packing in this region. We also show empirically that substitution of these clustered lysine residues with alanines or asparagines results in recombinant PrP amyloid fibrils with extended proteinase-K resistant ß-sheet cores and infrared spectra that are more reminiscent of bona fide PrP(Sc). These findings indicate that charge neutralization at the central lysine cluster is critical for the folding and tight packing of N-proximal residues within PrP amyloid fibrils. This charge neutralization may be a key aspect of the mechanism by which anionic cofactors promote PrP(Sc) formation.


Asunto(s)
Amiloide/química , Lisina/química , Proteínas PrPSc/química , Enfermedades por Prión/metabolismo , Amiloide/ultraestructura , Animales , Humanos , Mesocricetus , Simulación de Dinámica Molecular , Mutagénesis , Polielectrolitos , Polímeros/química , Proteínas PrPSc/genética , Proteínas PrPSc/ultraestructura , Enfermedades por Prión/etiología , Enfermedades por Prión/patología , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura , Electricidad Estática
15.
J Biol Chem ; 290(35): 21510-22, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26175152

RESUMEN

Human prion diseases can have acquired, sporadic, or genetic origins, each of which results in the conversion of prion protein (PrP) to transmissible, pathological forms. The genetic prion disease Gerstmann-Straussler-Scheinker syndrome can arise from point mutations of prolines 102 or 105. However, the structural effects of these two prolines, and mutations thereof, on PrP misfolding are not well understood. Here, we provide evidence that individual mutations of Pro-102 or Pro-105 to noncyclic aliphatic residues such as the Gerstmann-Straussler-Scheinker-linked leucines can promote the in vitro formation of PrP amyloid with extended protease-resistant cores reminiscent of infectious prions. This effect was enhanced by additional charge-neutralizing mutations of four nearby lysine residues comprising the so-called central lysine cluster. Substitution of these proline and lysine residues accelerated PrP conversion such that spontaneous amyloid formation was no longer slower than scrapie-seeded amyloid formation. Thus, Pro-102 and Pro-105, as well as the lysines in the central lysine cluster, impede amyloid formation by PrP, implicating these residues as key structural modulators in the conversion of PrP to disease-associated types of amyloid.


Asunto(s)
Amiloide/metabolismo , Lisina/metabolismo , Priones/química , Priones/metabolismo , Prolina/metabolismo , Amiloide/ultraestructura , Animales , Encéfalo/metabolismo , Encéfalo/patología , Secuencia Conservada , Cricetinae , Endopeptidasa K/metabolismo , Humanos , Cinética , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/química , Mutación , Coloración Negativa , Proteínas PrPSc/metabolismo , Priones/ultraestructura , Desnaturalización Proteica , Estructura Secundaria de Proteína , Scrapie/metabolismo , Alineación de Secuencia , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
16.
J Biol Chem ; 289(18): 12245-63, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24627481

RESUMEN

In prion-infected hosts, PrPSc usually accumulates as non-fibrillar, membrane-bound aggregates. Glycosylphosphatidylinositol (GPI) anchor-directed membrane association appears to be an important factor controlling the biophysical properties of PrPSc aggregates. To determine whether GPI anchoring can similarly modulate the assembly of other amyloid-forming proteins, neuronal cell lines were generated that expressed a GPI-anchored form of a model amyloidogenic protein, the NM domain of the yeast prion protein Sup35 (Sup35(GPI)). We recently reported that GPI anchoring facilitated the induction of Sup35(GPI) prions in this system. Here, we report the ultrastructural characterization of self-propagating Sup35(GPI) aggregates of either spontaneous or induced origin. Like membrane-bound PrPSc, Sup35(GPI) aggregates resisted release from cells treated with phosphatidylinositol-specific phospholipase C. Sup35(GPI) aggregates of spontaneous origin were detergent-insoluble, protease-resistant, and self-propagating, in a manner similar to that reported for recombinant Sup35NM amyloid fibrils and induced Sup35(GPI) aggregates. However, GPI-anchored Sup35 aggregates were not stained with amyloid-binding dyes, such as Thioflavin T. This was consistent with ultrastructural analyses, which showed that the aggregates corresponded to dense cell surface accumulations of membrane vesicle-like structures and were not fibrillar. Together, these results showed that GPI anchoring directs the assembly of Sup35NM into non-fibrillar, membrane-bound aggregates that resemble PrPSc, raising the possibility that GPI anchor-dependent modulation of protein aggregation might occur with other amyloidogenic proteins. This may contribute to differences in pathogenesis and pathology between prion diseases, which uniquely involve aggregation of a GPI-anchored protein, versus other protein misfolding diseases.


Asunto(s)
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Factores de Terminación de Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Línea Celular Tumoral , Vesículas Citoplasmáticas/ultraestructura , Detergentes/química , Glicosilfosfatidilinositoles/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/genética , Fosfoinositido Fosfolipasa C/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad
17.
J Immunol ; 191(12): 6022-9, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24190656

RESUMEN

Staphylococcus aureus secretes numerous virulence factors that facilitate evasion of the host immune system. Among these molecules are pore-forming cytolytic toxins, including Panton-Valentine leukocidin (PVL), leukotoxin GH (LukGH; also known as LukAB), leukotoxin DE, and γ-hemolysin. PVL and LukGH have potent cytolytic activity in vitro, and both toxins are proinflammatory in vivo. Although progress has been made toward elucidating the role of these toxins in S. aureus virulence, our understanding of the mechanisms that underlie the proinflammatory capacity of these toxins, as well as the associated host response toward them, is incomplete. To address this deficiency in knowledge, we assessed the ability of LukGH to prime human PMNs for enhanced bactericidal activity and further investigated the impact of the toxin on neutrophil function. We found that, unlike PVL, LukGH did not prime human neutrophils for increased production of reactive oxygen species nor did it enhance binding and/or uptake of S. aureus. Unexpectedly, LukGH promoted the release of neutrophil extracellular traps (NETs), which, in turn, ensnared but did not kill S. aureus. Furthermore, we found that electropermeabilization of human neutrophils, used as a separate means to create pores in the neutrophil plasma membrane, similarly induced formation of NETs, a finding consistent with the notion that NETs can form during nonspecific cytolysis. We propose that the ability of LukGH to promote formation of NETs contributes to the inflammatory response and host defense against S. aureus infection.


Asunto(s)
Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Leucocidinas/farmacología , Neutrófilos/inmunología , Staphylococcus aureus/patogenicidad , Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/aislamiento & purificación , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta Inmunológica , Electroporación , Exocitosis/efectos de los fármacos , Espacio Extracelular , Humanos , Leucocidinas/aislamiento & purificación , Neutrófilos/efectos de los fármacos , Neutrófilos/ultraestructura , Proteínas Opsoninas/inmunología , Peroxidasa/metabolismo , Estallido Respiratorio/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/química , Staphylococcus aureus/inmunología , Superóxidos/metabolismo , Virulencia
18.
J Virol ; 87(7): 3719-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23325688

RESUMEN

Bhanja virus (BHAV) and its antigenically close relatives Forecariah virus (FORV), Kismayo virus (KISV), and Palma virus (PALV) are thought to be members of the family Bunyaviridae, but they have not been assigned to a genus or species. Despite their broad geographical distribution and reports that BHAV causes sporadic cases of febrile illness and encephalitis in humans, the public health importance of the Bhanja serogroup viruses remains unclear, due in part to the lack of sequence and biochemical information for the virus proteins. In order to better define the molecular characteristics of this group, we determined the full-length sequences of the L, M, and S genome segments of multiple isolates of BHAV as well as FORV and PALV. The genome structures of these Bhanja viruses are similar to those of viruses belonging to the genus Phlebovirus. Functional domains and amino acid motifs in the viral proteins that are conserved among other known phleboviruses were also identified in proteins of the BHAV group. Phylogenetic and serological analyses revealed that the BHAVs are most closely related to the novel emerging tick-borne phleboviruses severe fever with thrombocytopenia syndrome virus and Heartland virus, which have recently been implicated as causing severe acute febrile illnesses associated with thrombocytopenia in humans in China and the United States. Our results indicate that the Bhanja serogroup viruses constitute a single novel species in the genus Phlebovirus. The results of this study should facilitate epidemiological surveillance for other, similar tick-borne phleboviruses that may represent unrecognized causes of febrile illness in humans.


Asunto(s)
Genoma Viral/genética , Phlebovirus/clasificación , Phlebovirus/genética , Filogenia , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Chlorocebus aethiops , Cartilla de ADN/genética , ADN Complementario/biosíntesis , Perros , Secuenciación de Nucleótidos de Alto Rendimiento , Funciones de Verosimilitud , Macrófagos , Microscopía Electrónica , Modelos Genéticos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Pruebas Serológicas , Especificidad de la Especie , Células Vero
19.
Curr Protoc ; 4(5): e1034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717581

RESUMEN

Scanning electron microscopy (SEM) remains distinct in its ability to allow topographical visualization of structures. Key elements to consider for successful examination of biological specimens include appropriate preparative and imaging techniques. Chemical processing induces structural artifacts during specimen preparation, and several factors need to be considered when selecting fixation protocols to reduce these effects while retaining structures of interest. Particular care for proper dehydration of specimens is essential to minimize shrinkage and is necessary for placement under the high-vacuum environment required for routine operation of standard SEMs. Choice of substrate for mounting and coating specimens can reduce artifacts known as charging, and a basic understanding of microscope settings can optimize parameters to achieve desired results. This article describes fundamental techniques and tips for routine specimen preparation for a variety of biological specimens, preservation of labile or fragile structures, immune-labeling strategies, and microscope imaging parameters for optimal examination by SEM. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Chemical preparative techniques for preservation of biological specimens for examination by SEM Alternate Protocol 1: Practical considerations for the preparation of soft tissues Alternate Protocol 2: Removal of debris from the exoskeleton of invertebrates Alternate Protocol 3: Fixation of colonies grown on agar plates Alternate Protocol 4: Stabilization of polysaccharide structures with alcian blue and lysine Alternate Protocol 5: Preparation of non-adherent particulates in solution for SEM Support Protocol 1: Application of thin layer of adhesive on substrate to improve adherence Support Protocol 2: Poly-L-lysine coating specimen substrates for improved adherence Support Protocol 3: Microwave processing of biological specimens for examination by SEM Basic Protocol 2: Critical point drying of specimens Alternate Protocol 6: Chemical alternative to critical point drying Basic Protocol 3: Sputter coating Alternate Protocol 7: Improved bulk conductivity through "OTOTO" Basic Protocol 4: Immune-labeling strategies Alternate Protocol 8: Immune-labeling internal antigens with small gold probes Alternate protocol 9: Quantum dot or fluoronanogold preparations for correlative techniques Basic Protocol 5: Exposure of internal structures by mechanical fracturing Basic Protocol 6: Exposure of internal structures of tissues by fracturing with liquid nitrogen Basic Protocol 7: Anaglyph production from stereo pairs to produce 3D images.


Asunto(s)
Microscopía Electrónica de Rastreo , Manejo de Especímenes , Microscopía Electrónica de Rastreo/métodos , Manejo de Especímenes/métodos , Animales
20.
J Virol ; 86(21): 11763-78, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915801

RESUMEN

Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrP(res)]) of the cellular prion protein (PrP(C)). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrP(C). Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrP(C) and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrP(C). To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrP(res)-like protease-resistant banding profile. These fibrils induced the formation of PrP(res) deposits in transgenic mice coexpressing wt and GPI-anchorless PrP(C) (wt/GPI(-)) at a combined level comparable to that of PrP(C) expression in wt mice. Secondary passage into mice expressing wt, GPI(-), or wt plus GPI(-) PrP(C) induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI(-) PrP(C) and, in one case, caused disease only in GPI(-) mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrP(C). These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrP(C) GPI anchor can modulate the propagation of synthetic TSE strains.


Asunto(s)
Priones/genética , Priones/aislamiento & purificación , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Priones/patogenicidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA