Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 26(6): 1115-1132, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28104789

RESUMEN

Huntington disease (HD) is a neurodegenerative disease caused by a mutation in the huntingtin (HTT) gene. HTT is a large protein, interacts with many partners and is involved in many cellular pathways, which are perturbed in HD. Therapies targeting HTT directly are likely to provide the most global benefit. Thus there is a need for preclinical models of HD recapitulating human HTT genetics. We previously generated a humanized mouse model of HD, Hu97/18, by intercrossing BACHD and YAC18 mice with knockout of the endogenous mouse HD homolog (Hdh). Hu97/18 mice recapitulate the genetics of HD, having two full-length, genomic human HTT transgenes heterozygous for the HD mutation and polymorphisms associated with HD in populations of Caucasian descent. We have now generated a companion model, Hu128/21, by intercrossing YAC128 and BAC21 mice on the Hdh-/- background. Hu128/21 mice have two full-length, genomic human HTT transgenes heterozygous for the HD mutation and polymorphisms associated with HD in populations of East Asian descent and in a minority of patients from other ethnic groups. Hu128/21 mice display a wide variety of HD-like phenotypes that are similar to YAC128 mice. Additionally, both transgenes in Hu128/21 mice match the human HTT exon 1 reference sequence. Conversely, the BACHD transgene carries a floxed, synthetic exon 1 sequence. Hu128/21 mice will be useful for investigations of human HTT that cannot be addressed in Hu97/18 mice, for developing therapies targeted to exon 1, and for preclinical screening of personalized HTT lowering therapies in HD patients of East Asian descent.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Mutación/genética , Alelos , Animales , Modelos Animales de Enfermedad , Exones/genética , Heterocigoto , Humanos , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Fenotipo
2.
Hum Mol Genet ; 24(11): 3257-71, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25740845

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Ácido Glutámico/fisiología , Enfermedad de Huntington/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/fisiología , Edad de Inicio , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Humanos , Enfermedad de Huntington/patología , Ratones
3.
Mol Ther ; 23(11): 1759-1771, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26201449

RESUMEN

Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder.


Asunto(s)
Terapia Genética/métodos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Proteínas del Tejido Nervioso/genética , Alelos , Expresión Génica , Marcación de Gen , Haplotipos/genética , Heterocigoto , Humanos , Proteína Huntingtina , Mutación INDEL/genética , Oligonucleótidos Antisentido/genética , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , Expansión de Repetición de Trinucleótido/genética , Población Blanca/genética
4.
J Biol Chem ; 289(6): 3518-28, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24347167

RESUMEN

Huntington disease is associated with early alterations in corticostriatal synaptic function that precede cell death, and it is postulated that ameliorating such changes may delay clinical onset and/or prevent neurodegeneration. Although many of these synaptic alterations are thought to be attributable to a toxic gain of function of the mutant huntingtin protein, the role that nonpathogenic huntingtin (HTT) plays in synaptic function is relatively unexplored. Here, we compare the immunocytochemical localization of a major postsynaptic scaffolding protein, PSD-95, in striatal neurons from WT mice and mice overexpressing HTT with 18 glutamine repeats (YAC18, nonpathogenic). We found that HTT overexpression resulted in a palmitoylation- and BDNF-dependent increase in PSD-95 clustering at synaptic sites in striatal spiny projection neurons (SPNs) co-cultured with cortical neurons. Surprisingly, the latter effect was mediated presynaptically, as HTT overexpression in cortical neurons alone was sufficient to increase PSD-95 clustering in the postsynaptic SPNs. In contrast, antisense oligonucleotide knockdown of HTT in WT co-cultures resulted in a significant reduction of PSD-95 clustering in SPNs. Notably, despite these bidirectional changes in PSD-95 clustering, we did not observe an alteration in basal electrophysiological measures of AMPA and NMDA receptors. Thus, unlike in previous studies in the hippocampus, enhanced or decreased PSD-95 clustering alone was insufficient to drive AMPA or NMDA receptors into or out of SPN synapses. In all, our results demonstrate that nonpathogenic HTT can indeed influence synaptic protein localization and uncover a novel role of HTT in PSD-95 distribution.


Asunto(s)
Cuerpo Estriado/metabolismo , Guanilato-Quinasas/metabolismo , Lipoilación/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Densidad Postsináptica/metabolismo , Animales , Cuerpo Estriado/citología , Homólogo 4 de la Proteína Discs Large , Técnicas de Silenciamiento del Gen , Guanilato-Quinasas/genética , Hipocampo/citología , Hipocampo/metabolismo , Proteína Huntingtina , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteínas Nucleares/genética , Densidad Postsináptica/genética , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Hum Mol Genet ; 22(3): 452-65, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23077216

RESUMEN

Palmitoylation, the dynamic post-translational addition of the lipid, palmitate, to proteins by Asp-His-His-Cys-containing palmitoyl acyltransferase (PAT) enzymes, modulates protein function and localization and plays a key role in the nervous system. Huntingtin-interacting protein 14 (HIP14), a well-characterized neuronal PAT, has been implicated in the pathogenesis of Huntington disease (HD), a fatal neurodegenerative disease associated with motor, psychiatric and cognitive symptoms, caused by a CAG expansion in the huntingtin gene (HTT). Mice deficient for Hip14 expression develop neuropathological and behavioural features similar to HD, and the catalytic activity of HIP14 is impaired in HD mice, most likely due to the reduced interaction of HIP14 with HTT. Huntingtin-interacting protein 14-like (HIP14L) is a paralog of HIP14, with identical domain structure. Together, HIP14 and HIP14L are the major PATs for HTT. Here, we report the characterization of a Hip14l-deficient mouse model, which develops adult-onset, widespread and progressive neuropathology accompanied by early motor deficits in climbing, impaired motor learning and reduced palmitoylation of a novel HIP14L substrate: SNAP25. Although the phenotype resembles that of the Hip14(-/-) mice, a more progressive phenotype, similar to that of the YAC128 transgenic mouse model of HD, is observed. In addition, HIP14L interacts less with mutant HTT than the wild-type protein, suggesting that reduced HIP14L-dependent palmitoylation of neuronal substrates may contribute to the pathogenesis of HD. Thus, both HIP14 and HIP14L may be dysfunctional in the disease.


Asunto(s)
Aciltransferasas/genética , Modelos Animales de Enfermedad , Eliminación de Gen , Enfermedad de Huntington/genética , Neuronas/patología , Aciltransferasas/deficiencia , Aciltransferasas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Femenino , Regulación de la Expresión Génica , Proteína Huntingtina , Enfermedad de Huntington/patología , Immunoblotting , Aprendizaje/fisiología , Lipoilación , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análisis de Secuencia de ADN , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo
6.
Hum Mol Genet ; 22(1): 18-34, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23001568

RESUMEN

Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh(-/-) background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Animales , Silenciador del Gen , Humanos , Enfermedad de Huntington/psicología , Ratones , Ratones Transgénicos , Mutación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Prueba de Desempeño de Rotación con Aceleración Constante
7.
Mol Ther ; 22(12): 2093-2106, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25101598

RESUMEN

Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/terapia , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido/administración & dosificación , Tionucleótidos/administración & dosificación , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Silenciador del Gen , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Inyecciones , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/farmacología , Polimorfismo de Nucleótido Simple , Ratas , Ratas Sprague-Dawley , Tionucleótidos/farmacología
8.
Nucleic Acids Res ; 41(21): 9634-50, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23963702

RESUMEN

Autosomal dominant diseases such as Huntington's disease (HD) are caused by a gain of function mutant protein and/or RNA. An ideal treatment for these diseases is to selectively suppress expression of the mutant allele while preserving expression of the wild-type variant. RNase H active antisense oligonucleotides (ASOs) or small interfering RNAs can achieve allele selective suppression of gene expression by targeting single nucleotide polymorphisms (SNPs) associated with the repeat expansion. ASOs have been previously shown to discriminate single nucleotide changes in targeted RNAs with ∼5-fold selectivity. Based on RNase H enzymology, we enhanced single nucleotide discrimination by positional incorporation of chemical modifications within the oligonucleotide to limit RNase H cleavage of the non-targeted transcript. The resulting oligonucleotides demonstrate >100-fold discrimination for a single nucleotide change at an SNP site in the disease causing huntingtin mRNA, in patient cells and in a completely humanized mouse model of HD. The modified ASOs were also well tolerated after injection into the central nervous system of wild-type animals, suggesting that their tolerability profile is suitable for advancement as potential allele-selective HD therapeutics. Our findings lay the foundation for efficient allele-selective downregulation of gene expression using ASOs-an outcome with broad application to HD and other dominant genetic disorders.


Asunto(s)
Alelos , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido/química , Polimorfismo de Nucleótido Simple , Animales , Emparejamiento Base , Encéfalo/metabolismo , Células Cultivadas , Regulación hacia Abajo , Flúor/química , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Ratas , Ratas Sprague-Dawley , Ribonucleasa H/metabolismo
9.
J Med Genet ; 50(10): 696-703, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23896435

RESUMEN

INTRODUCTION: New mutations for Huntington disease (HD) occur due to CAG repeat instability of intermediate alleles (IA). IAs have between 27 and 35 CAG repeats, a range just below the disease threshold of 36 repeats. While they usually do not confer the HD phenotype, IAs are prone to paternal germline CAG repeat instability. Consequently, they may expand into the HD range upon transmission to the next generation, producing a new mutation. Quantified risk estimates for IA repeat instability are extremely limited but needed to inform clinical practice. METHODS: Using small-pool PCR of sperm DNA from Caucasian men, we examined the frequency and magnitude of CAG repeat instability across the entire range of intermediate CAG sizes. The CAG size-specific risk estimates generated are based on the largest sample size ever examined, including 30 IAs and 18 198 sperm. RESULTS: Our findings demonstrate a significant risk of new mutations. While all intermediate CAG sizes demonstrated repeat expansion into the HD range, alleles with 34 and 35 CAG repeats were associated with the highest risk of a new mutation (2.4% and 21.0%, respectively). IAs with ≥33 CAG repeats showed a dramatic increase in the frequency of instability and a switch towards a preponderance of repeat expansions over contractions. CONCLUSIONS: These data provide novel insights into the origins of new mutations for HD. The CAG size-specific risk estimates inform clinical practice and provide accurate risk information for persons who receive an IA predictive test result.


Asunto(s)
Alelos , Inestabilidad Genómica , Enfermedad de Huntington/genética , Expansión de Repetición de Trinucleótido , Frecuencia de los Genes , Genotipo , Mutación de Línea Germinal , Humanos , Masculino , Espermatozoides/metabolismo
10.
Hum Mol Genet ; 20(20): 3899-909, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21775500

RESUMEN

Huntingtin interacting protein 14 (HIP14, ZDHHC17) is a huntingtin (HTT) interacting protein with palmitoyl transferase activity. In order to interrogate the function of Hip14, we generated mice with disruption in their Hip14 gene. Hip14-/- mice displayed behavioral, biochemical and neuropathological defects that are reminiscent of Huntington disease (HD). Palmitoylation of other HIP14 substrates, but not Htt, was reduced in the Hip14-/- mice. Hip14 is dysfunctional in the presence of mutant htt in the YAC128 mouse model of HD, suggesting that altered palmitoylation mediated by HIP14 may contribute to HD.


Asunto(s)
Aciltransferasas/deficiencia , Enfermedad de Huntington/etiología , Lipoilación/genética , Proteínas del Tejido Nervioso/deficiencia , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Muerte Celular/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Encefalinas/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Ratones , Ratones Noqueados , Actividad Motora/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Sinapsis/metabolismo
11.
Am J Med Genet B Neuropsychiatr Genet ; 162B(8): 864-71, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038799

RESUMEN

Intermediate alleles (27-35 CAG, IAs) for Huntington disease (HD) usually do not confer the disease phenotype but are prone to CAG repeat instability. Consequently, offspring are at-risk of inheriting an expanded allele in the HD range (≥36 CAG). IAs that expand into a new mutation have been hypothesized to be more susceptible to instability compared to IAs identified on the non-HD side of a family from the general population. Frequency estimates for IAs are limited and have largely been determined using clinical samples of HD or related disorders, which may result in an ascertainment bias. This study aimed to establish the frequency of IAs in a sample of a British Columbia's (B.C.) general population with no known association to HD and examine the haplotype of new mutation and general population IAs. CAG sizing was performed on 1,600 DNA samples from B.C.'s general population. Haplotypes were determined using 22 tagging SNPs across the HTT gene. 5.8% of individuals were found to have an IA, of which 60% were on HD-associated haplotypes. There was no difference in the haplotype distribution of new mutation and general population IAs. These findings suggest that IAs are relatively frequent in the general population and are often found on haplotypes associated with expanded CAG lengths. There is likely no difference in the propensity of new mutation and general population IAs to expand into the disease range given that they are both found on disease-associated haplotypes. These findings have important implications for clinical practice.


Asunto(s)
Alelos , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad , Haplotipos/genética , Enfermedad de Huntington/genética , Colombia Británica , Genética de Población , Humanos , Penetrancia
12.
Mol Ther ; 19(12): 2178-85, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21971427

RESUMEN

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion in the huntingtin gene (HTT) that results in a toxic gain of function in the mutant huntingtin protein (mHTT). Reducing the expression of mHTT is therefore an attractive therapy for HD. However, wild-type HTT protein is essential for development and has critical roles in maintaining neuronal health. Therapies for HD that reduce wild-type HTT may therefore generate unintended negative consequences. We have identified single-nucleotide polymorphism (SNP) targets in the human HD population for the disease-specific targeting of the HTT gene. Using primary cells from patients with HD and the transgenic YAC18 and BACHD mouse lines, we developed antisense oligonucleotide (ASO) molecules that potently and selectively silence mHTT at both exonic and intronic SNP sites. Modification of these ASOs with S-constrained-ethyl (cET) motifs significantly improves potency while maintaining allele selectively in vitro. The developed ASO is potent and selective for mHTT in vivo after delivery to the mouse brain. We demonstrate that potent and selective allele-specific knockdown of the mHTT protein can be achieved at therapeutically relevant SNP sites using ASOs in vitro and in vivo.


Asunto(s)
Enfermedad de Huntington/terapia , Proteínas Mutantes/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Oligonucleótidos Antisentido/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Alelos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Silenciador del Gen , Terapia Genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Linaje , ARN Mensajero/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Expansión de Repetición de Trinucleótido/genética
13.
J Huntingtons Dis ; 10(3): 355-365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34092649

RESUMEN

BACKGROUND: Therapeutics that lower mutant huntingtin (mHTT) have shown promise in preclinical studies and are in clinical development for the treatment of Huntington disease (HD). Multiple assays have been developed that either quantify mHTT or total HTT but may not accurately measure levels of wild type HTT (wtHTT) in biological samples. OBJECTIVE: To optimize a method that can be used to resolve, quantify and directly compare levels of full length wtHTT and mHTT in HD samples. METHODS: We provide a detailed quantitative immunoblotting protocol to reproducibly resolve full length wtHTT and mHTT in multiple HD mouse and patient samples. RESULTS: We show that this assay can be modified, depending on the sample, to resolve wtHTT and mHTT with a wide range of polyglutamine length differences (ΔQs 22-179). We also demonstrate that this method can be used to quantify allele-selective lowering of mHTT using an antisense oligonucleotide in HD patient-derived cells. CONCLUSION: This quantitative immunoblotting method can be used to reliably resolve full-length HTT alleles with ΔQs≥22 and allows for direct comparison of wtHTT and mHTT levels in HD samples.


Asunto(s)
Enfermedad de Huntington , Alelos , Animales , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Immunoblotting , Ratones
14.
Hum Mol Genet ; 17(15): 2390-404, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18445618

RESUMEN

Proteolysis of mutant huntingtin is crucial to the development of Huntington disease (HD). Specifically preventing proteolysis at the capase-6 (C6) consensus sequence at amino acid 586 of mutant huntingtin prevents the development of behavioural, motor and neuropathological features in a mouse model of HD. However, the mechanism underlying the selective toxicity of the 586 amino acid cleavage event is currently unknown. We have examined the subcellular localization of different caspase proteolytic fragments of huntingtin using neo-epitope antibodies. Our data suggest that the nucleus is the primary site of htt cleavage at amino acid 586. Endogenously cleaved 586 amino acid fragments are enriched in the nucleus of immortalized striatal cells and primary striatal neurons where they co-localize with active C6. Cell stress induced by staurosporine results in the nuclear translocation and activation of C6 and an increase in 586 amino acid fragments of huntingtin in the nucleus. In comparison, endogenous caspase-2/3-generated huntingtin 552 amino acid fragments localize to the perinuclear region. The different cellular itineraries of endogenously generated caspase products of huntingtin may provide an explanation for the selective toxicity of huntingtin fragments cleaved at amino acid 586.


Asunto(s)
Caspasa 6/metabolismo , Núcleo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Núcleo Celular/enzimología , Chlorocebus aethiops , Citoplasma/enzimología , Activación Enzimática , Humanos , Proteína Huntingtina , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Estructura Terciaria de Proteína
15.
Mol Cell Neurosci ; 40(2): 121-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18992820

RESUMEN

Huntingtin is phosphorylated on serine-421 (S421) by the pro-survival signaling protein kinases Akt and SGK. Phosphorylation of huntingtin at S421 is variable in different regions of the brain with the lowest levels observed in the striatum, which is further reduced by the mutation for Huntington disease (HD). Cleavage of huntingtin by caspase-6 at amino acid 586 is a crucial event in the pathogenesis of HD. Nuclear localization of huntingtin is also an important marker of HD and preventing or delaying its nuclear accumulation is protective in disease models. Phosphorylation influences proteolysis and clearance of many protein substrates. We therefore sought to investigate the influence of huntingtin phosphorylation at S421 on the accumulation of huntingtin-caspase-6 fragments because these fragments are generated in the nucleus and are crucial for the disease phenotype. Using phospho-huntingtin mutants and a cleavage site-specific neo-epitope huntingtin antibody, we demonstrate that phosphorylation at S421 reduces the nuclear accumulation of huntingtin-caspase-6 fragments by reducing huntingtin cleavage by caspase-6, the levels of full-length huntingtin, and its nuclear localization.


Asunto(s)
Núcleo Celular/metabolismo , Enfermedad de Huntington , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Células COS , Caspasa 6/metabolismo , Chlorocebus aethiops , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fragmentos de Péptidos/genética , Fosforilación , Procesamiento Proteico-Postraduccional
16.
Sci Transl Med ; 10(461)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282695

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified HTT single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT. We tested allele-specific ASOs in a mouse model of HD. Both early and late treatment reduced cognitive and behavioral impairments in mice. To determine the translational potential of the treatment, we examined the effect of ASO administration on HTT brain expression in nonhuman primates. The treatment induced robust HTT suppression throughout the cortex and limbic system, areas implicated in cognition and psychiatric function. The results suggest that ASOs specifically targeting mutated HTT might have therapeutic effects on HD-mediated cognitive impairments.


Asunto(s)
Cognición , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Animales , Ansiedad/complicaciones , Ansiedad/patología , Ansiedad/fisiopatología , Atrofia/patología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Humanos , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/patología , Sistema Límbico/patología , Masculino , Proteínas Mutantes/metabolismo , Oligonucleótidos Antisentido/farmacología , Primates
17.
Nat Neurosci ; 18(6): 807-16, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25938884

RESUMEN

Cis-regulatory variants that alter gene expression can modify disease expressivity, but none have previously been identified in Huntington disease (HD). Here we provide in vivo evidence in HD patients that cis-regulatory variants in the HTT promoter are bidirectional modifiers of HD age of onset. HTT promoter analysis identified a NF-κB binding site that regulates HTT promoter transcriptional activity. A non-coding SNP, rs13102260:G > A, in this binding site impaired NF-κB binding and reduced HTT transcriptional activity and HTT protein expression. The presence of the rs13102260 minor (A) variant on the HD disease allele was associated with delayed age of onset in familial cases, whereas the presence of the rs13102260 (A) variant on the wild-type HTT allele was associated with earlier age of onset in HD patients in an extreme case-based cohort. Our findings suggest a previously unknown mechanism linking allele-specific effects of rs13102260 on HTT expression to HD age of onset and have implications for HTT silencing treatments that are currently in development.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Edad de Inicio , Alelos , Estudios de Cohortes , ADN/genética , Regulación de la Expresión Génica/fisiología , Genes Reporteros/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/fisiopatología , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica
18.
PLoS One ; 9(9): e107434, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25207939

RESUMEN

Huntington disease (HD) is an inherited, fatal neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The mutant protein causes neuronal dysfunction and degeneration resulting in motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, there is no disease altering treatment, and symptomatic therapy has limited benefit. The pathogenesis of HD is complicated and multiple pathways are compromised. Addressing the problem at its genetic root by suppressing mutant huntingtin expression is a promising therapeutic strategy for HD. We have developed and evaluated antisense oligonucleotides (ASOs) targeting single nucleotide polymorphisms that are significantly enriched on HD alleles (HD-SNPs). We describe our structure-activity relationship studies for ASO design and find that adjusting the SNP position within the gap, chemical modifications of the wings, and shortening the unmodified gap are critical for potent, specific, and well tolerated silencing of mutant huntingtin. Finally, we show that using two distinct ASO drugs targeting the two allelic variants of an HD-SNP could provide a therapeutic option for all persons with HD; allele-specifically for roughly half, and non-specifically for the remainder.


Asunto(s)
Terapia Genética , Enfermedad de Huntington/terapia , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuronas/metabolismo , Oligonucleótidos Antisentido/genética , Alelos , Animales , Secuencia de Bases , Diseño de Fármacos , Embrión de Mamíferos , Femenino , Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Oligonucleótidos Antisentido/química , Polimorfismo de Nucleótido Simple , Cultivo Primario de Células , Interferencia de ARN , Relación Estructura-Actividad
19.
Eur J Hum Genet ; 21(10): 1120-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23463025

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder resulting from the expansion of a CAG trinucleotide repeat in the huntingtin (HTT) gene. Worldwide prevalence varies geographically with the highest figures reported in populations of European ancestry. HD in South Africa has been reported in Caucasian, black and mixed subpopulations, with similar estimated prevalence in the Caucasian and mixed groups and a lower estimate in the black subpopulation. Recent studies have associated specific HTT haplotypes with HD in distinct populations. Expanded HD alleles in Europe occur predominantly on haplogroup A (specifically high-risk variants A1/A2), whereas in East Asian populations, HD alleles are associated with haplogroup C. Whether specific HTT haplotypes associate with HD in black Africans and how these compare with haplotypes found in European and East Asian populations remains unknown. The current study genotyped the HTT region in unaffected individuals and HD patients from each of the South African subpopulations, and haplotypes were constructed. CAG repeat sizes were determined and phased to haplotype. Results indicate that HD alleles from Caucasian and mixed patients are predominantly associated with haplogroup A, signifying a similar European origin for HD. However, in black patients, HD occurs predominantly on haplogroup B, suggesting several distinct origins of the mutation in South Africa. The absence of high-risk variants (A1/A2) in the black subpopulation may also explain the reported low prevalence of HD. Identification of haplotypes associated with HD-expanded alleles is particularly relevant to the development of population-specific therapeutic targets for selective suppression of the expanded HTT transcript.


Asunto(s)
Población Negra/genética , Haplotipos , Enfermedad de Huntington/genética , Población Blanca/genética , Alelos , Estudios de Casos y Controles , Humanos , Proteína Huntingtina , Enfermedad de Huntington/epidemiología , Enfermedad de Huntington/etnología , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Sudáfrica
20.
Eur J Hum Genet ; 19(5): 561-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21248742

RESUMEN

Huntington disease (HD) results from CAG expansion in the huntingtin (HTT) gene. Although HD occurs worldwide, there are large geographic differences in its prevalence. The prevalence in populations derived from Europe is 10-100 times greater than in East Asia. The European general population chromosomes can be grouped into three major haplogroups (group of similar haplotypes): A, B and C. The majority of HD chromosomes in Europe are found on haplogroup A. However, in the East-Asian populations of China and Japan, we find the majority of HD chromosomes are associated with haplogroup C. The highest risk HD haplotypes (A1 and A2), are absent from the general and HD populations of China and Japan, and therefore provide an explanation for why HD prevalence is low in East Asia. Interestingly, both East-Asian and European populations share a similar low level of HD on haplogroup C. Our data are consistent with the hypothesis that different HTT haplotypes have different mutation rates, and geographic differences in HTT haplotypes explain the difference in HD prevalence. Further, the bias for expansion on haplogroup C in the East-Asian population cannot be explained by a higher average CAG size, as haplogroup C has a lower average CAG size in the general East-Asian population compared with other haplogroups. This finding suggests that CAG-tract size is not the only factor important for CAG instability. Instead, the expansion bias may be because of genetic cis-elements within the haplotype that influence CAG instability in HTT, possibly through different mutational mechanisms for the different haplogroups.


Asunto(s)
Pueblo Asiatico/genética , Enfermedad de Huntington/etnología , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Población Blanca/genética , Haplotipos , Humanos , Proteína Huntingtina , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA