Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 300(2): 105651, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237679

RESUMEN

Mouse Double Minute 2 (MDM2) is a key negative regulator of the tumor suppressor protein p53. MDM2 overexpression occurs in many types of cancer and results in the suppression of WT p53. The 14-3-3 family of adaptor proteins are known to bind MDM2 and the 14-3-3σ isoform controls MDM2 cellular localization and stability to inhibit its activity. Therefore, small molecule stabilization of the 14-3-3σ/MDM2 protein-protein interaction (PPI) is a potential therapeutic strategy for the treatment of cancer. Here, we provide a detailed biophysical and structural characterization of the phosphorylation-dependent interaction between 14-3-3σ and peptides that mimic the 14-3-3 binding motifs within MDM2. The data show that di-phosphorylation of MDM2 at S166 and S186 is essential for high affinity 14-3-3 binding and that the binary complex formed involves one MDM2 di-phosphorylated peptide bound to a dimer of 14-3-3σ. However, the two phosphorylation sites do not simultaneously interact so as to bridge the 14-3-3 dimer in a 'multivalent' fashion. Instead, the two phosphorylated MDM2 motifs 'rock' between the two binding grooves of the dimer, which is unusual in the context of 14-3-3 proteins. In addition, we show that the 14-3-3σ-MDM2 interaction is amenable to small molecule stabilization. The natural product fusicoccin A forms a ternary complex with a 14-3-3σ dimer and an MDM2 di-phosphorylated peptide resulting in the stabilization of the 14-3-3σ/MDM2 PPI. This work serves as a proof-of-concept of the drugability of the 14-3-3/MDM2 PPI and paves the way toward the development of more selective and efficacious small molecule stabilizers.


Asunto(s)
Proteínas 14-3-3 , Proteínas Proto-Oncogénicas c-mdm2 , Péptidos/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536342

RESUMEN

Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.


Asunto(s)
Regulación Alostérica/genética , Descubrimiento de Drogas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Conformación Proteica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Sitio Alostérico/genética , Sitios de Unión/genética , Fenómenos Biofísicos , Cristalografía por Rayos X , Humanos , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/química , Unión Proteica/genética
3.
Biochem J ; 474(7): 1273-1287, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28202711

RESUMEN

Binding of 14-3-3 proteins to leucine-rich repeat protein kinase 2 (LRRK2) is known to be impaired by many Parkinson's disease (PD)-relevant mutations. Abrogation of this interaction is connected to enhanced LRRK2 kinase activity, which in turn is implicated in increased ubiquitination of LRRK2, accumulation of LRRK2 into inclusion bodies and reduction in neurite length. Hence, the interaction between 14-3-3 and LRRK2 is of significant interest as a possible drug target for the treatment of PD. However, LRRK2 possesses multiple sites that, upon phosphorylation, can bind to 14-3-3, thus rendering the interaction relatively complex. Using biochemical assays and crystal structures, we characterize the multivalent interaction between these two proteins.


Asunto(s)
Proteínas 14-3-3/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Péptidos/química , Proteínas Recombinantes de Fusión/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Modelos Moleculares , Mutación , Péptidos/síntesis química , Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
Chemistry ; 23(60): 15227-15232, 2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-28983993

RESUMEN

The productive exploration of chemical space is an enduring challenge in chemical biology and medicinal chemistry. Natural products are biologically relevant, and their frameworks have facilitated chemical tool and drug discovery. A "top-down" synthetic approach is described that enabled a range of complex bridged intermediates to be converted with high step efficiency into 26 diverse sp3 -rich scaffolds. The scaffolds have local natural product-like features, but are only distantly related to specific natural product frameworks. To assess biological relevance, a set of 52 fragments was prepared, and screened by high-throughput crystallography against three targets from two protein families (ATAD2, BRD1 and JMJD2D). In each case, 3D fragment hits were identified that would serve as distinctive starting points for ligand discovery. This demonstrates that frameworks that are distantly related to natural products can facilitate discovery of new biologically relevant regions within chemical space.


Asunto(s)
Productos Biológicos/química , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Sitios de Unión , Productos Biológicos/síntesis química , Productos Biológicos/metabolismo , Dominio Catalítico , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Ensayos Analíticos de Alto Rendimiento , Histona Acetiltransferasas , Chaperonas de Histonas , Humanos , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dominios Proteicos , Teoría Cuántica , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
5.
Org Biomol Chem ; 13(3): 859-65, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25408068

RESUMEN

Controlling the properties of lead molecules is critical in drug discovery, but sourcing large numbers of lead-like compounds for screening collections is a major challenge. A unified synthetic approach is described that enabled the synthesis of 52 diverse lead-like molecular scaffolds from a minimal set of 13 precursors. The divergent approach exploited a suite of robust, functional group-tolerant transformations. Crucially, after derivatisation, these scaffolds would target significant lead-like chemical space, and complement commercially-available compounds.


Asunto(s)
Aminas/química , Carbonatos/química , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas/síntesis química , Técnicas de Química Sintética , Ciclización , Diseño de Fármacos , Ensayos Analíticos de Alto Rendimiento , Estructura Molecular
6.
Curr Opin Struct Biol ; 86: 102822, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38685162

RESUMEN

Protein-protein interactions (PPIs) play a critical role in cellular signaling and represent interesting targets for therapeutic intervention. 14-3-3 proteins integrate many signaling targets via PPIs and are frequently implicated in disease, making them intriguing drug targets. Here, we review the recent advances in the 14-3-3 field. It will discuss the roles 14-3-3 proteins play within the cell, elucidation of their expansive interactome, and the complex mechanisms that underpin their function. In addition, the review will discuss significant advances in the development of molecular glues that target 14-3-3 PPIs. In particular, it will focus on novel drug discovery and development methodologies that have delivered selective, potent, and drug-like molecules that could open new avenues for the development of precision molecular tools and medicines.


Asunto(s)
Proteínas 14-3-3 , Mapas de Interacción de Proteínas , Proteínas 14-3-3/metabolismo , Humanos , Unión Proteica , Descubrimiento de Drogas , Transducción de Señal , Animales , Mapeo de Interacción de Proteínas/métodos
7.
Chem Sci ; 14(24): 6756-6762, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37350830

RESUMEN

Molecular glues are powerful tools for the control of protein-protein interactions. Yet, the mechanisms underlying multi-component protein complex formation remain poorly understood. Native mass spectrometry (MS) detects multiple protein species simultaneously, providing an entry to elucidate these mechanisms. Here, for the first time, covalent molecular glue stabilization was kinetically investigated by combining native MS with biophysical and structural techniques. This approach elucidated the stoichiometry of a multi-component protein-ligand complex, the assembly order, and the contributions of covalent versus non-covalent binding events that govern molecular glue activity. Aldehyde-based molecular glue activity is initially regulated by cooperative non-covalent binding, followed by slow covalent ligation, further enhancing stabilization. This study provides a framework to investigate the mechanisms of covalent small molecule ligation and informs (covalent) molecular glue development.

8.
Front Mol Biosci ; 9: 1043673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425654

RESUMEN

14-3-3 proteins are a family of regulatory hubs that function through a vast network of protein-protein interactions. Their dysfunction or dysregulation is implicated in a wide range of diseases, and thus they are attractive drug targets, especially for molecular glues that promote protein-protein interactions for therapeutic intervention. However, an incomplete understanding of the molecular mechanisms that underpin 14-3-3 function hampers progress in drug design and development. Biophysical methodologies are an essential element of the 14-3-3 analytical toolbox, but in many cases have not been fully exploited. Here, we present a contemporary review of the predominant biophysical techniques used to study 14-3-3 protein-protein interactions, with a focus on examples that address key questions and challenges in the 14-3-3 field.

9.
Chem Sci ; 12(39): 12985-12992, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34745529

RESUMEN

14-3-3 proteins are an important family of hub proteins that play important roles in many cellular processes via a large network of interactions with partner proteins. Many of these protein-protein interactions (PPI) are implicated in human diseases such as cancer and neurodegeneration. The stabilisation of selected 14-3-3 PPIs using drug-like 'molecular glues' is a novel therapeutic strategy with high potential. However, the examples reported to date have a number of drawbacks in terms of selectivity and potency. Here, we report that WR-1065, the active species of the approved drug amifostine, covalently modifies 14-3-3σ at an isoform-unique cysteine residue, Cys38. This modification leads to isoform-specific stabilisation of two 14-3-3σ PPIs in a manner that is cooperative with a well characterised molecular glue, fusicoccin A. Our findings reveal a novel stabilisation mechanism for 14-3-3σ, an isoform with particular involvement in cancer pathways. This mechanism can be exploited to harness the enhanced potency conveyed by covalent drug molecules and dual ligand cooperativity. This is demonstrated in two cancer cell lines whereby the cooperative behaviour of fusicoccin A and WR-1065 leads to enhanced efficacy for inducing cell death and attenuating cell growth.

10.
ACS Med Chem Lett ; 12(4): 631-639, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33854703

RESUMEN

The nuclear receptor RORγt is a key positive regulator in the differentiation and proliferation of T helper 17 (Th17) cells and the production of proinflammatory cytokines like IL-17a. Dysregulation of this pathway can result in the development of various autoimmune diseases, and inhibition of RORγt with small molecules thus holds great potential as a therapeutic strategy. RORγt has a unique allosteric ligand binding site in the ligand binding domain, which is distinct from the canonical, orthosteric binding site. Allosteric modulation of RORγt shows high potential, but the targeted discovery of novel allosteric ligands is highly challenging via currently available methods. Here, we introduce covalent, orthosteric chemical probes for RORγt that occlude the binding of canonical, orthosteric ligands but still allow allosteric ligand binding. Ultimately, these probes could be used to underpin screening approaches for the unambiguous and rapid identification of novel allosteric RORγt ligands.

11.
Chem Sci ; 12(32): 10724-10731, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34447561

RESUMEN

Protein-protein interactions (PPIs) are key therapeutic targets. Most PPI-targeting drugs in the clinic inhibit these important interactions; however, stabilising PPIs is an attractive alternative in cases where a PPI is disrupted in a disease state. The discovery of novel PPI stabilisers has been hindered due to the lack of tools available to monitor PPI stabilisation. Moreover, for PPI stabilisation to be detected, both the stoichiometry of binding and the shift this has on the binding equilibria need to be monitored simultaneously. Here, we show the power of native mass spectrometry (MS) in the rapid search for PPI stabilisers. To demonstrate its capability, we focussed on three PPIs between the eukaryotic regulatory protein 14-3-3σ and its binding partners estrogen receptor ERα, the tumour suppressor p53, and the kinase LRRK2, whose interactions upon the addition of a small molecule, fusicoccin A, are differentially stabilised. Within a single measurement the stoichiometry and binding equilibria between 14-3-3 and each of its binding partners was evident. Upon addition of the fusicoccin A stabiliser, a dramatic shift in binding equilibria was observed with the 14-3-3:ERα complex compared with the 14-3-3:p53 and 14-3-3:LRRK2 complexes. Our results highlight how native MS can not only distinguish the ability of stabilisers to modulate PPIs, but also give important insights into the dynamics of ternary complex formation. Finally, we show how native MS can be used as a screening tool to search for PPI stabilisers, highlighting its potential role as a primary screening technology in the hunt for novel therapeutic PPI stabilisers.

12.
J Med Chem ; 64(13): 9238-9258, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34008974

RESUMEN

The inhibition of the nuclear receptor retinoic-acid-receptor-related orphan receptor γt (RORγt) is a promising strategy in the treatment of autoimmune diseases. RORγt features an allosteric binding site within its ligand-binding domain that provides an opportunity to overcome drawbacks associated with orthosteric modulators. Recently, trisubstituted isoxazoles were identified as a novel class of allosteric RORγt inverse agonists. This chemotype offers new opportunities for optimization into selective and efficacious allosteric drug-like molecules. Here, we explore the structure-activity relationship profile of the isoxazole series utilizing a combination of structure-based design, X-ray crystallography, and biochemical assays. The initial lead isoxazole (FM26) was optimized, resulting in compounds with a ∼10-fold increase in potency (low nM), significant cellular activity, promising pharmacokinetic properties, and a good selectivity profile over the peroxisome-proliferated-activated receptor γ and the farnesoid X receptor. We envisage that this work will serve as a platform for the accelerated development of isoxazoles and other novel chemotypes for the effective allosteric targeting of RORγt.


Asunto(s)
Isoxazoles/farmacología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Sitio Alostérico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Ligandos , Modelos Moleculares , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Relación Estructura-Actividad
13.
Cell Death Discov ; 6(1): 126, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33298896

RESUMEN

Most cancers evolve to disable the p53 pathway, a key tumour suppressor mechanism that prevents transformation and malignant cell growth. However, only ~50% exhibit inactivating mutations of p53, while in the rest its activity is suppressed by changes in the proteins that modulate the pathway. Therefore, restoring p53 activity in cells in which it is still wild type is a highly attractive therapeutic strategy that could be effective in many different cancer types. To this end, drugs can be used to stabilise p53 levels by modulating its regulatory pathways. However, despite the emergence of promising strategies, drug development has stalled in clinical trials. The need for alternative approaches has shifted the spotlight to the 14-3-3 family of proteins, which strongly influence p53 stability and transcriptional activity through direct and indirect interactions. Here, we present the first detailed review of how 14-3-3 proteins regulate p53, with special emphasis on the mechanisms involved in their binding to different members of the pathway. This information will be important to design new compounds that can reactivate p53 in cancer cells by influencing protein-protein interactions. The intricate relationship between the 14-3-3 isoforms and the p53 pathway suggests that many potential drug targets for p53 reactivation could be identified and exploited to design novel antineoplastic therapies with a wide range of applications.

14.
ChemMedChem ; 15(7): 561-565, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32053744

RESUMEN

The demand for allosteric targeting of nuclear receptors is high, but examples are limited, and structural information is scarce. The retinoic acid-related orphan receptor gamma t (RORγt) is an important transcriptional regulator for the differentiation of T helper 17 cells for which the first, and some of the most promising, examples of allosteric nuclear receptor modulation have been reported and structurally proven. In a 2015 patent, filed by the pharmaceutical company Glenmark, a new class of small molecules was reported that act as potent inverse agonists for RORγt. A compound library around the central thienopyrazole scaffold captured a clear structure-activity relationship, but the binding mechanism of this new class of RORγt modulators has not been elucidated. Using a combination of biochemical and X-ray crystallography studies, here the allosteric mechanism for the inverse agonism for the most potent compound, classified in the patent as "example 13", is reported, providing a strongly desired additional example of allosteric nuclear receptor targeting.


Asunto(s)
Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Pirazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/aislamiento & purificación , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Pirazoles/síntesis química , Pirazoles/química
15.
J Med Chem ; 63(1): 241-259, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31821760

RESUMEN

Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor associated with the pathogenesis of autoimmune diseases. Allosteric inhibition of RORγt is conceptually new, unique for this specific nuclear receptor, and offers advantages over traditional orthosteric inhibition. Here, we report a highly efficient in silico-guided approach that led to the discovery of novel allosteric RORγt inverse agonists with a distinct isoxazole chemotype. The the most potent compound, 25 (FM26), displayed submicromolar inhibition in a coactivator recruitment assay and effectively reduced IL-17a mRNA production in EL4 cells, a marker of RORγt activity. The projected allosteric mode of action of 25 was confirmed by biochemical experiments and cocrystallization with the RORγt ligand binding domain. The isoxazole compounds have promising pharmacokinetic properties comparable to other allosteric ligands but with a more diverse chemotype. The efficient ligand-based design approach adopted demonstrates its versatility in generating chemical diversity for allosteric targeting of RORγt.


Asunto(s)
Isoxazoles/farmacología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Animales , Sitios de Unión , Línea Celular Tumoral , Reacción de Cicloadición , Diseño de Fármacos , Agonismo Inverso de Drogas , Isoxazoles/síntesis química , Isoxazoles/metabolismo , Ligandos , Ratones , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Relación Estructura-Actividad
16.
ACS Chem Biol ; 15(1): 262-271, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31742997

RESUMEN

The interaction between the adapter protein 14-3-3σ and transcription factor p53 is important for preserving the tumor-suppressor functions of p53 in the cell. A phosphorylated motif within the C-terminal domain (CTD) of p53 is key for binding to the amphipathic groove of 14-3-3. This motif is unique among 14-3-3 binding partners, and the precise dynamics of the interaction is not yet fully understood. Here, we investigate this interaction at the molecular level by analyzing the binding of different length p53 CTD peptides to 14-3-3σ using ITC, SPR, NMR, and MD simulations. We observed that the propensity of the p53 peptide to adopt turn-like conformation plays an important role in the binding to the 14-3-3σ protein. Our study contributes to elucidate the molecular mechanism of the 14-3-3-p53 binding and provides useful insight into how conformation properties of a ligand influence protein binding.


Asunto(s)
Proteínas 14-3-3/química , Fragmentos de Péptidos/química , Proteína p53 Supresora de Tumor/química , Secuencia de Aminoácidos , Sitios de Unión , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie , Termodinámica
17.
J Med Chem ; 63(13): 6694-6707, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32501690

RESUMEN

Stabilization of protein-protein interactions (PPIs) holds great potential for therapeutic agents, as illustrated by the successful drugs rapamycin and lenalidomide. However, how such interface-binding molecules can be created in a rational, bottom-up manner is a largely unanswered question. We report here how a fragment-based approach can be used to identify chemical starting points for the development of small-molecule stabilizers that differentiate between two different PPI interfaces of the adapter protein 14-3-3. The fragments discriminately bind to the interface of 14-3-3 with the recognition motif of either the tumor suppressor protein p53 or the oncogenic transcription factor TAZ. This X-ray crystallography driven study shows that the rim of the interface of individual 14-3-3 complexes can be targeted in a differential manner with fragments that represent promising starting points for the development of specific 14-3-3 PPI stabilizers.


Asunto(s)
Proteínas 14-3-3/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas 14-3-3/química , Diseño de Fármacos , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Conformación Proteica
18.
J Med Chem ; 61(9): 3755-3778, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28968506

RESUMEN

Direct interactions between proteins are essential for the regulation of their functions in biological pathways. Targeting the complex network of protein-protein interactions (PPIs) has now been widely recognized as an attractive means to therapeutically intervene in disease states. Even though this is a challenging endeavor and PPIs have long been regarded as "undruggable" targets, the last two decades have seen an increasing number of successful examples of PPI modulators, resulting in growing interest in this field. PPI modulation requires novel approaches and the integrated efforts of multiple disciplines to be a fruitful strategy. This perspective focuses on the hub-protein 14-3-3, which has several hundred identified protein interaction partners, and is therefore involved in a wide range of cellular processes and diseases. Here, we aim to provide an integrated overview of the approaches explored for the modulation of 14-3-3 PPIs and review the examples resulting from these efforts in both inhibiting and stabilizing specific 14-3-3 protein complexes by small molecules, peptide mimetics, and natural products.


Asunto(s)
Proteínas 14-3-3/metabolismo , Descubrimiento de Drogas/métodos , Proteínas 14-3-3/antagonistas & inhibidores , Animales , Humanos , Unión Proteica , Estabilidad Proteica/efectos de los fármacos
19.
FEBS Lett ; 591(16): 2449-2457, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28640363

RESUMEN

14-3-3 proteins are positive regulators of the tumor suppressor p53, the mutation of which is implicated in many human cancers. Current strategies for targeting of p53 involve restoration of wild-type function or inhibition of the interaction with MDM2, its key negative regulator. Despite the efficacy of these strategies, the alternate approach of stabilizing the interaction of p53 with positive regulators and, thus, enhancing tumor suppressor activity, has not been explored. Here, we report the first example of small-molecule stabilization of the 14-3-3 - p53 protein-protein interaction (PPI) and demonstrate the potential of this approach as a therapeutic modality. We also observed a disconnect between biophysical and crystallographic data in the presence of a stabilizing molecule, which is unusual in 14-3-3 PPIs.


Asunto(s)
Proteínas 14-3-3/metabolismo , Glicósidos/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas 14-3-3/química , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteína p53 Supresora de Tumor/química
20.
Expert Opin Drug Discov ; 12(9): 925-940, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28695752

RESUMEN

INTRODUCTION: PPIs are involved in every disease and specific modulation of these PPIs with small molecules would significantly improve our prospects of developing therapeutic agents. Both industry and academia have engaged in the identification and use of PPI inhibitors. However in comparison, the opposite strategy of employing small-molecule stabilizers of PPIs is underrepresented in drug discovery. Areas covered: PPI stabilization has not been exploited in a systematic manner. Rather, this concept validated by a number of therapeutically used natural products like rapamycin and paclitaxel has been shown retrospectively to be the basis of the activity of synthetic molecules originating from drug discovery projects among them lenalidomide and tafamidis. Here, the authors cover the growing number of synthetic small-molecule PPI stabilizers to advocate for a stronger consideration of this as a drug discovery approach. Expert opinion: Both the natural products and the growing number of synthetic molecules show that PPI stabilization is a viable strategy for drug discovery. There is certainly a significant challenge to adapt compound libraries, screening techniques and downstream methodologies to identify, characterize and optimize PPI stabilizers, but the examples of molecules reviewed here in our opinion justify these efforts.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas/métodos , Proteínas/metabolismo , Productos Biológicos/farmacología , Humanos , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Unión Proteica , Estabilidad Proteica , Bibliotecas de Moléculas Pequeñas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA