Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer Metastasis Rev ; 35(4): 547-573, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28025748

RESUMEN

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.


Asunto(s)
Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Animales , Femenino , Xenoinjertos , Humanos , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Investigación Biomédica Traslacional
2.
Bioinformatics ; 31(10): 1655-62, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25573920

RESUMEN

MOTIVATION: The probability of effective treatment of cancer with a targeted therapeutic can be improved for patients with defined genotypes containing actionable mutations. To this end, many human cancer biobanks are integrating more tightly with genomic sequencing facilities and with those creating and maintaining patient-derived xenografts (PDX) and cell lines to provide renewable resources for translational research. RESULTS: To support the complex data management needs and workflows of several such biobanks, we developed Acquire. It is a robust, secure, web-based, database-backed open-source system that supports all major needs of a modern cancer biobank. Its modules allow for i) up-to-the-minute 'scoreboard' and graphical reporting of collections; ii) end user roles and permissions; iii) specimen inventory through caTissue Suite; iv) shipping forms for distribution of specimens to pathology, genomic analysis and PDX/cell line creation facilities; v) robust ad hoc querying; vi) molecular and cellular quality control metrics to track specimens' progress and quality; vii) public researcher request; viii) resource allocation committee distribution request review and oversight and ix) linkage to available derivatives of specimen.


Asunto(s)
Bancos de Muestras Biológicas , Minería de Datos/métodos , Almacenamiento y Recuperación de la Información/métodos , Neoplasias , Control de Calidad , Programas Informáticos , Biología Computacional/métodos , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Genómica , Humanos , Interfaz Usuario-Computador
3.
NPJ Precis Oncol ; 7(1): 123, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980380

RESUMEN

The rising utilization of circulating tumor DNA (ctDNA) assays in Precision Oncology may incidentally detect genetic material from secondary sources. It is important that such findings are recognized and properly leveraged for both diagnosis and monitoring of response to treatment. Here, we report a patient in whom serial cell-free DNA (cfDNA) monitoring for his known prostate adenocarcinoma uncovered the emergence of an unexpected FGFR3-TACC3 gene fusion, a BRCA1 frameshift mutation, and other molecular abnormalities. Due to the rarity of FGFR3 fusions in prostate cancer, a workup for a second primary cancer was performed, leading to the diagnosis of an otherwise-asymptomatic urothelial carcinoma (UC). Once UC-directed treatment was initiated, the presence of these genetic abnormalities in cfDNA allowed for disease monitoring and early detection of resistance, well before radiographic progression. These findings also uncovered opportunities for targeted therapies against FGFR and BRCA1. Overall, this report highlights the multifaceted utility of longitudinal ctDNA monitoring in early cancer diagnosis, disease prognostication, therapeutic target identification, monitoring of treatment response, and early detection of emergence of resistance.

4.
Tomography ; 9(2): 810-828, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37104137

RESUMEN

Co-clinical trials are the concurrent or sequential evaluation of therapeutics in both patients clinically and patient-derived xenografts (PDX) pre-clinically, in a manner designed to match the pharmacokinetics and pharmacodynamics of the agent(s) used. The primary goal is to determine the degree to which PDX cohort responses recapitulate patient cohort responses at the phenotypic and molecular levels, such that pre-clinical and clinical trials can inform one another. A major issue is how to manage, integrate, and analyze the abundance of data generated across both spatial and temporal scales, as well as across species. To address this issue, we are developing MIRACCL (molecular and imaging response analysis of co-clinical trials), a web-based analytical tool. For prototyping, we simulated data for a co-clinical trial in "triple-negative" breast cancer (TNBC) by pairing pre- (T0) and on-treatment (T1) magnetic resonance imaging (MRI) from the I-SPY2 trial, as well as PDX-based T0 and T1 MRI. Baseline (T0) and on-treatment (T1) RNA expression data were also simulated for TNBC and PDX. Image features derived from both datasets were cross-referenced to omic data to evaluate MIRACCL functionality for correlating and displaying MRI-based changes in tumor size, vascularity, and cellularity with changes in mRNA expression as a function of treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador
5.
iScience ; 26(1): 105799, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36619972

RESUMEN

Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.

6.
NAR Cancer ; 4(2): zcac014, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35475145

RESUMEN

We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials.

7.
Cancer Res ; 77(21): e62-e66, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092942

RESUMEN

Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models has hampered the ability of researchers to find relevant PDX models and associated data. Here we present the PDX models minimal information standard (PDX-MI) for reporting on the generation, quality assurance, and use of PDX models. PDX-MI defines the minimal information for describing the clinical attributes of a patient's tumor, the processes of implantation and passaging of tumors in a host mouse strain, quality assurance methods, and the use of PDX models in cancer research. Adherence to PDX-MI standards will facilitate accurate search results for oncology models and their associated data across distributed repository databases and promote reproducibility in research studies using these models. Cancer Res; 77(21); e62-66. ©2017 AACR.


Asunto(s)
Neoplasias , Ensayos Antitumor por Modelo de Xenoinjerto/estadística & datos numéricos , Animales , Bases de Datos como Asunto , Modelos Animales de Enfermedad , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Pacientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA