Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372130

RESUMEN

How do firing patterns in a cortical circuit change when inhibitory neurons are excited? We virally expressed an excitatory designer receptor exclusively activated by a designer drug (Gq-DREADD) in all inhibitory interneuron types of the CA1 region of the hippocampus in the rat. While clozapine N-oxide (CNO) activation of interneurons suppressed firing of pyramidal cells, unexpectedly the majority of interneurons also decreased their activity. CNO-induced inhibition decreased over repeated sessions, which we attribute to long-term synaptic plasticity between interneurons and pyramidal cells. Individual interneurons did not display sustained firing but instead transiently enhanced their activity, interleaved with suppression of others. The power of the local fields in the theta band was unaffected, while power at higher frequencies was attenuated, likely reflecting reduced pyramidal neuron spiking. The incidence of sharp wave ripples decreased but the surviving ripples were associated with stronger population firing compared with the control condition. These findings demonstrate that DREADD activation of interneurons brings about both short-term and long-term circuit reorganization, which should be taken into account in the interpretation of chemogenic effects on behavior.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Interneuronas/fisiología , Células Piramidales/metabolismo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Clozapina/análogos & derivados , Clozapina/farmacología , Femenino , Hipocampo/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Parvalbúminas/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
2.
Cereb Cortex ; 31(8): 3678-3700, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33749727

RESUMEN

Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Estimulación Acústica , Adulto , Animales , Estimulación Eléctrica , Electroencefalografía , Fenómenos Electrofisiológicos , Epilepsia/fisiopatología , Espacio Extracelular/fisiología , Femenino , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microelectrodos , Persona de Mediana Edad , Corteza Somatosensorial/fisiología , Análisis de Ondículas , Adulto Joven
3.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685634

RESUMEN

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Asunto(s)
Ritmo alfa , Corteza Cerebral/fisiología , Electrodos , Electroencefalografía , Humanos , Tálamo/fisiología
4.
Proc Natl Acad Sci U S A ; 115(31): E7418-E7427, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30006465

RESUMEN

Mnemonic decision-making has long been hypothesized to rely on hippocampal dynamics that bias memory processing toward the formation of new memories or the retrieval of old ones. Successful memory encoding may be best optimized by pattern separation, whereby two highly similar experiences can be represented by underlying neural populations in an orthogonal manner. By contrast, successful memory retrieval is thought to be supported by a recovery of the same neural pattern laid down during encoding. Here we examined how hippocampal pattern completion and separation emerge over time during memory decisions. We measured electrocorticography activity in the human hippocampus and posterior occipitotemporal cortex (OTC) while participants performed continuous recognition of items that were new, repeated (old), or highly similar to a prior item (similar). During retrieval decisions of old items, both regions exhibited significant reinstatement of multivariate high-frequency activity (HFA) associated with encoding. Further, the extent of reinstatement of encoding patterns during retrieval was correlated with the strength (HFA power) of hippocampal encoding. Evidence for encoding pattern reinstatement was also seen in OTC on trials requiring fine-grained discrimination of similar items. By contrast, hippocampal activity showed evidence for pattern separation during these trials. Together, these results underscore the critical role of the hippocampus in supporting both reinstatement of overlapping information and separation of similar events.


Asunto(s)
Hipocampo/fisiología , Memoria , Adulto , Toma de Decisiones , Electrocorticografía , Femenino , Humanos , Masculino , Lóbulo Occipital/fisiología , Adulto Joven
5.
Ann Neurol ; 83(6): 1133-1146, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29679388

RESUMEN

OBJECTIVE: Somatic variants are a recognized cause of epilepsy-associated focal malformations of cortical development (MCD). We hypothesized that somatic variants may underlie a wider range of focal epilepsy, including nonlesional focal epilepsy (NLFE). Through genetic analysis of brain tissue, we evaluated the role of somatic variation in focal epilepsy with and without MCD. METHODS: We identified somatic variants through high-depth exome and ultra-high-depth candidate gene sequencing of DNA from epilepsy surgery specimens and leukocytes from 18 individuals with NLFE and 38 with focal MCD. RESULTS: We observed somatic variants in 5 cases in SLC35A2, a gene associated with glycosylation defects and rare X-linked epileptic encephalopathies. Nonsynonymous variants in SLC35A2 were detected in resected brain, and absent from leukocytes, in 3 of 18 individuals (17%) with NLFE, 1 female and 2 males, with variant allele frequencies (VAFs) in brain-derived DNA of 2 to 14%. Pathologic evaluation revealed focal cortical dysplasia type Ia (FCD1a) in 2 of the 3 NLFE cases. In the MCD cohort, nonsynonymous variants in SCL35A2 were detected in the brains of 2 males with intractable epilepsy, developmental delay, and magnetic resonance imaging suggesting FCD, with VAFs of 19 to 53%; Evidence for FCD was not observed in either brain tissue specimen. INTERPRETATION: We report somatic variants in SLC35A2 as an explanation for a substantial fraction of NLFE, a largely unexplained condition, as well as focal MCD, previously shown to result from somatic mutation but until now only in PI3K-AKT-mTOR pathway genes. Collectively, our findings suggest a larger role than previously recognized for glycosylation defects in the intractable epilepsies. Ann Neurol 2018.


Asunto(s)
Encéfalo/patología , Epilepsia Refractaria/genética , Proteínas de Transporte de Monosacáridos/genética , Neocórtex/patología , Adolescente , Niño , Exoma/genética , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical/genética , Mutación/genética , Neuronas/patología , Fosfatidilinositol 3-Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Adulto Joven
6.
J Neurosci ; 36(10): 2847-56, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961941

RESUMEN

A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised.


Asunto(s)
Lesiones Encefálicas/complicaciones , Trastornos de la Memoria/etiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Memoria Espacial/fisiología , Adulto , Lesiones Encefálicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Estimulación Luminosa , Movimientos Sacádicos/fisiología , Adulto Joven
7.
J Neurophysiol ; 116(3): 1049-54, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27306678

RESUMEN

The neural mechanisms that support working memory (WM) depend on persistent neural activity. Within topographically organized maps of space in dorsal parietal cortex, spatially selective neural activity persists during WM for location. However, to date, the necessity of these topographic subregions of human parietal cortex for WM remains unknown. To test the causal relationship of these areas to WM, we compared the performance of patients with lesions to topographically organized parietal cortex with those of controls on a memory-guided saccade (MGS) task as well as a visually guided saccade (VGS) task. The MGS task allowed us to measure WM precision continuously with great sensitivity, whereas the VGS task allowed us to control for any deficits in general spatial or visuomotor processing. Compared with controls, patients generated memory-guided saccades that were significantly slower and less accurate, whereas visually guided saccades were unaffected. These results provide key missing evidence for the causal role of topographic areas in human parietal cortex for WM, as well as the neural mechanisms supporting WM.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Trastornos de la Memoria/etiología , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/patología , Memoria Espacial/fisiología , Adulto , Mapeo Encefálico , Movimientos Oculares/fisiología , Femenino , Humanos , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tiempo de Reacción
8.
Epilepsia ; 56(4): 527-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25684448

RESUMEN

OBJECTIVE: For patients with medically intractable focal epilepsy, the benefit of epilepsy surgery must be weighed against the risk of cognitive decline. Clinical factors such as age and presurgical cognitive level partially predict cognitive outcome; yet, little is known about the role of cross-hemispheric white matter pathways in supporting postsurgical recovery of cognitive function. The purpose of this study is to determine whether the presurgical corpus callosum (CC) midsagittal area is associated with pre- to postsurgical change following epilepsy surgery. METHODS: In this observational study, we retrospectively identified 24 adult patients from an epilepsy resection series who completed preoperative high-resolution T1 -weighted magnetic resonance imaging (MRI) scans, as well as pre- and postsurgical neuropsychological testing. The total area and seven subregional areas of the CC were measured on the midsagittal MRI slice using an automated method. Standardized indices of auditory-verbal working memory and delayed memory were used to probe cognitive change from pre- to postsurgery. CC total and subregional areas were regressed on memory-change scores, after controlling for overall brain volume, age, presurgical memory scores, and duration of epilepsy. RESULTS: Patients had significantly reduced CC area relative to healthy controls. We found a positive relationship between CC area and change in working memory, but not delayed memory; specifically, the larger the CC, the greater the postsurgical improvement in working memory (ß = 0.523; p = 0.009). Effects were strongest in posterior CC subregions. There was no relationship between CC area and presurgical memory scores. SIGNIFICANCE: Findings indicate that larger CC area, measured presurgically, is related to improvement in working memory abilities following epilepsy surgery. This suggests that transcallosal pathways may play an important, yet little understood, role in postsurgical recovery of cognitive functions.


Asunto(s)
Cuerpo Calloso/anatomía & histología , Cuerpo Calloso/fisiología , Epilepsia/diagnóstico , Epilepsia/cirugía , Memoria a Corto Plazo/fisiología , Recuperación de la Función/fisiología , Adolescente , Adulto , Epilepsia/metabolismo , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Escalas de Wechsler , Adulto Joven
9.
bioRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745363

RESUMEN

Cortical regions supporting speech production are commonly established using neuroimaging techniques in both research and clinical settings. However, for neurosurgical purposes, structural function is routinely mapped peri-operatively using direct electrocortical stimulation. While this method is the gold standard for identification of eloquent cortical regions to preserve in neurosurgical patients, there is lack of specificity of the actual underlying cognitive processes being interrupted. To address this, we propose mapping the temporal dynamics of speech arrest across peri-sylvian cortices by quantifying the latency between stimulation and speech deficits. In doing so, we are able to substantiate hypotheses about distinct region-specific functional roles (e.g., planning versus motor execution). In this retrospective observational study, we analyzed 20 patients (12 female; age range 14-43) with refractory epilepsy who underwent continuous extra-operative intracranial EEG monitoring of an automatic speech task during clinical bedside language mapping. Latency to speech arrest was calculated as time from stimulation onset to speech arrest onset, controlling for individual speech rate. Most instances of motor-based arrest (87.5% of 96 instances) were in sensorimotor cortex with mid-range latencies to speech arrest with a distributional peak at 0.47 seconds. Speech arrest occurred in numerous regions, with relatively short latencies in supramarginal gyrus (0.46 seconds), superior temporal gyrus (0.51 seconds), and middle temporal gyrus (0.54 seconds), followed by relatively long latencies in sensorimotor cortex (0.72 seconds) and especially long latencies in inferior frontal gyrus (0.95 seconds). Nonparametric testing for speech arrest revealed that region predicted latency; latencies in supramarginal gyrus and in superior temporal gyrus were shorter than in sensorimotor cortex and in inferior frontal gyrus. Sensorimotor cortex is primarily responsible for motor-based arrest. Latencies to speech arrest in supramarginal gyrus and superior temporal gyrus (and to a lesser extent middle temporal gyrus) align with latencies to motor-based arrest in sensorimotor cortex. This pattern of relatively quick cessation of speech suggests that stimulating these regions interferes with the outgoing motor execution. In contrast, the latencies to speech arrest in inferior frontal gyrus and in ventral regions of sensorimotor cortex were significantly longer than those in temporoparietal regions. Longer latencies in the more frontal areas (including inferior frontal gyrus and ventral areas of precentral gyrus and postcentral gyrus) suggest that stimulating these areas interrupts a higher-level speech production process involved in planning. These results implicate the ventral specialization of sensorimotor cortex (including both precentral and postcentral gyri) for speech planning above and beyond motor execution.

10.
bioRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948730

RESUMEN

Syntax, the abstract structure of language, is a hallmark of human cognition. Despite its importance, its neural underpinnings remain obscured by inherent limitations of non-invasive brain measures and a near total focus on comprehension paradigms. Here, we address these limitations with high-resolution neurosurgical recordings (electrocorticography) and a controlled sentence production experiment. We uncover three syntactic networks that are broadly distributed across traditional language regions, but with focal concentrations in middle and inferior frontal gyri. In contrast to previous findings from comprehension studies, these networks process syntax mostly to the exclusion of words and meaning, supporting a cognitive architecture with a distinct syntactic system. Most strikingly, our data reveal an unexpected property of syntax: it is encoded independent of neural activity levels. We propose that this "low-activity coding" scheme represents a novel mechanism for encoding information, reserved for higher-order cognition more broadly.

11.
Brain Commun ; 6(2): fcae053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505231

RESUMEN

Cortical regions supporting speech production are commonly established using neuroimaging techniques in both research and clinical settings. However, for neurosurgical purposes, structural function is routinely mapped peri-operatively using direct electrocortical stimulation. While this method is the gold standard for identification of eloquent cortical regions to preserve in neurosurgical patients, there is lack of specificity of the actual underlying cognitive processes being interrupted. To address this, we propose mapping the temporal dynamics of speech arrest across peri-sylvian cortices by quantifying the latency between stimulation and speech deficits. In doing so, we are able to substantiate hypotheses about distinct region-specific functional roles (e.g. planning versus motor execution). In this retrospective observational study, we analysed 20 patients (12 female; age range 14-43) with refractory epilepsy who underwent continuous extra-operative intracranial EEG monitoring of an automatic speech task during clinical bedside language mapping. Latency to speech arrest was calculated as time from stimulation onset to speech arrest onset, controlling for individual speech rate. Most instances of motor-based arrest (87.5% of 96 instances) were in sensorimotor cortex with mid-range latencies to speech arrest with a distributional peak at 0.47 s. Speech arrest occurred in numerous regions, with relatively short latencies in supramarginal gyrus (0.46 s), superior temporal gyrus (0.51 s) and middle temporal gyrus (0.54 s), followed by relatively long latencies in sensorimotor cortex (0.72 s) and especially long latencies in inferior frontal gyrus (0.95 s). Non-parametric testing for speech arrest revealed that region predicted latency; latencies in supramarginal gyrus and in superior temporal gyrus were shorter than in sensorimotor cortex and in inferior frontal gyrus. Sensorimotor cortex is primarily responsible for motor-based arrest. Latencies to speech arrest in supramarginal gyrus and superior temporal gyrus (and to a lesser extent middle temporal gyrus) align with latencies to motor-based arrest in sensorimotor cortex. This pattern of relatively quick cessation of speech suggests that stimulating these regions interferes with the outgoing motor execution. In contrast, the latencies to speech arrest in inferior frontal gyrus and in ventral regions of sensorimotor cortex were significantly longer than those in temporoparietal regions. Longer latencies in the more frontal areas (including inferior frontal gyrus and ventral areas of precentral gyrus and postcentral gyrus) suggest that stimulating these areas interrupts a higher-level speech production process involved in planning. These results implicate the ventral specialization of sensorimotor cortex (including both precentral and postcentral gyri) for speech planning above and beyond motor execution.

13.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37292795

RESUMEN

High-frequency phase-locked oscillations have been hypothesized to facilitate integration ('binding') of information encoded across widespread cortical areas. Ripples (~100ms long ~90Hz oscillations) co-occur ('co-ripple') broadly in multiple states and locations, but have only been associated with memory replay. We tested whether cortico-cortical co-ripples subserve a general role in binding by recording intracranial EEG during reading. Co-rippling increased to words versus consonant-strings between visual, wordform and semantic cortical areas when letters are binding into words, and words to meaning. Similarly, co-ripples strongly increased before correct responses between executive, response, wordform and semantic areas when word meanings bind instructions and response. Task-selective co-rippling dissociated from non-oscillatory activation and memory reinstatement. Co-ripples were phase-locked at zero-lag, even at long distances (>12cm), supporting a general role in cognitive binding.

14.
Neuroimage ; 63(1): 157-165, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22759995

RESUMEN

Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96 mm ± 0.81 mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Electrodos Implantados , Electroencefalografía/instrumentación , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Encéfalo/cirugía , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
J Clin Neurophysiol ; 39(4): 283-288, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32925251

RESUMEN

PURPOSE: A device that provides continuous, long-term, accurate seizure detection information to providers and patients could fundamentally alter epilepsy care. Subgaleal (SG) EEG is a promising modality that offers a minimally invasive, safe, and accurate means of long-term seizure monitoring. METHODS: Subgaleal EEG electrodes were placed, at or near the cranial vertex, simultaneously with intracranial EEG electrodes in 21 epilepsy patients undergoing intracranial EEG studies for up to 13 days. A total of 219, 10-minute single-channel SGEEG samples, including 138 interictal awake or sleep segments and 81 seizures (36 temporal lobe, 32 extra-temporal, and 13 simultaneous temporal/extra-emporal onsets) were reviewed by 3 expert readers blinded to the intracranial EEG results, then analyzed for accuracy and interrater reliability. RESULTS: Using a single-channel of SGEEG, reviewers accurately identified 98% of temporal and extratemporal onset, intracranial, EEG-verified seizures with a sensitivity of 98% and specificity of 99%. All focal to bilateral tonic--clonic seizures were correctly identified. CONCLUSIONS: Single-channel SGEEG, placed at or near the vertex, reliably identifies focal and secondarily generalized seizures. These findings demonstrate that the SG space at the cranial vertex may be an appropriate site for long-term ambulatory seizure monitoring.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Electrocorticografía , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia del Lóbulo Temporal/diagnóstico , Humanos , Reproducibilidad de los Resultados , Convulsiones/diagnóstico
16.
Nat Commun ; 13(1): 48, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013268

RESUMEN

Reconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks. Based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future brain computer interfaces, and assessed their performance to discriminate speech items in articulatory, phonetic, and vocalic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings show that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding.


Asunto(s)
Interfaces Cerebro-Computador , Electrocorticografía , Lenguaje , Habla , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Electrodos , Femenino , Humanos , Imaginación , Masculino , Persona de Mediana Edad , Fonética , Adulto Joven
17.
Brain Commun ; 4(3): fcac122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663384

RESUMEN

One-third of epilepsy patients suffer from medication-resistant seizures. While surgery to remove epileptogenic tissue helps some patients, 30-70% of patients continue to experience seizures following resection. Surgical outcomes may be improved with more accurate localization of epileptogenic tissue. We have previously developed novel thin-film, subdural electrode arrays with hundreds of microelectrodes over a 100-1000 mm2 area to enable high-resolution mapping of neural activity. Here, we used these high-density arrays to study microscale properties of human epileptiform activity. We performed intraoperative micro-electrocorticographic recordings in nine patients with epilepsy. In addition, we recorded from four patients with movement disorders undergoing deep brain stimulator implantation as non-epileptic controls. A board-certified epileptologist identified microseizures, which resembled electrographic seizures normally observed with clinical macroelectrodes. Recordings in epileptic patients had a significantly higher microseizure rate (2.01 events/min) than recordings in non-epileptic subjects (0.01 events/min; permutation test, P = 0.0068). Using spatial averaging to simulate recordings from larger electrode contacts, we found that the number of detected microseizures decreased rapidly with increasing contact diameter and decreasing contact density. In cases in which microseizures were spatially distributed across multiple channels, the approximate onset region was identified. Our results suggest that micro-electrocorticographic electrode arrays with a high density of contacts and large coverage are essential for capturing microseizures in epilepsy patients and may be beneficial for localizing epileptogenic tissue to plan surgery or target brain stimulation.

18.
Brain ; 133(Pt 6): 1668-81, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20511283

RESUMEN

Epileptic cortex is characterized by paroxysmal electrical discharges. Analysis of these interictal discharges typically manifests as spike-wave complexes on electroencephalography, and plays a critical role in diagnosing and treating epilepsy. Despite their fundamental importance, little is known about the neurophysiological mechanisms generating these events in human focal epilepsy. Using three different systems of microelectrodes, we recorded local field potentials and single-unit action potentials during interictal discharges in patients with medically intractable focal epilepsy undergoing diagnostic workup for localization of seizure foci. We studied 336 single units in 20 patients. Ten different cortical areas and the hippocampus, including regions both inside and outside the seizure focus, were sampled. In three of these patients, high density microelectrode arrays simultaneously recorded between 43 and 166 single units from a small (4 mm x 4 mm) patch of cortex. We examined how the firing rates of individual neurons changed during interictal discharges by determining whether the firing rate during the event was the same, above or below a median baseline firing rate estimated from interictal discharge-free periods (Kruskal-Wallis one-way analysis, P<0.05). Only 48% of the recorded units showed such a modulation in firing rate within 500 ms of the discharge. Units modulated during the discharge exhibited significantly higher baseline firing and bursting rates than unmodulated units. As expected, many units (27% of the modulated population) showed an increase in firing rate during the fast segment of the discharge (+ or - 35 ms from the peak of the discharge), while 50% showed a decrease during the slow wave. Notably, in direct contrast to predictions based on models of a pure paroxysmal depolarizing shift, 7.7% of modulated units recorded in or near the seizure focus showed a decrease in activity well ahead (0-300 ms) of the discharge onset, while 12.2% of units increased in activity in this period. No such pre-discharge changes were seen in regions well outside the seizure focus. In many recordings there was also a decrease in broadband field potential activity during this same pre-discharge period. The different patterns of interictal discharge-modulated firing were classified into more than 15 different categories. This heterogeneity in single unit activity was present within small cortical regions as well as inside and outside the seizure onset zone, suggesting that interictal epileptiform activity in patients with epilepsy is not a simple paroxysm of hypersynchronous excitatory activity, but rather represents an interplay of multiple distinct neuronal types within complex neuronal networks.


Asunto(s)
Potenciales de Acción , Corteza Cerebral/fisiopatología , Epilepsia/fisiopatología , Neuronas/fisiología , Adolescente , Adulto , Niño , Electrodos Implantados , Electroencefalografía/métodos , Epilepsia/diagnóstico , Femenino , Hipocampo/fisiopatología , Humanos , Masculino , Microelectrodos , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
19.
Epilepsy Behav ; 20(3): 478-83, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21296622

RESUMEN

OBJECTIVE: Studies have reported improved seizure control with increased duration of vagus nerve stimulation (VNS) but are prone to methodological biases. We analyzed the efficacy of VNS over time in patients with treatment-resistant epilepsy (TRE) who underwent VNS therapy 10 or more years. METHODS: We retrospectively reviewed 65 consecutive patients (29 females) who underwent VNS therapy ≥ 10 years. The mean age at VNS insertion was 30.0 years. Forty-four adults (≥ 18 years; 67.7%) and 21 children (32.3%) were included. Seizure frequency and antiepileptic drug (AED) regimens were recorded prior to VNS and, following VNS insertion, at 6 months, 1 year, 2 years, and every 2 years thereafter. RESULTS: The mean duration of VNS therapy for this group was 10.4 years, and the mean decrease in seizure frequency at last follow-up was 76.3%. The mean reduction in seizures at 6 months and years 1, 2, 4, 6, 8, and 10 years was 35.7, 52.1, 58.3, 60.4, 65.7, 75.5, and 75.5%, respectively. Seizure frequency was significantly reduced from baseline at each of the recorded intervals (P<0.001). There was a trend toward increased AED burden in the latter years of the follow-up period. CONCLUSION: Following a "ramp-up" and accommodation period throughout the initial 24 months after VNS implantation, seizure control improved slightly over the subsequent years of therapy and eventually stabilized. Variation in seizure frequency, however, was common, and frequent changes in AED regimens or stimulation parameters were likely an important and possibly synergistic component of seizure control.


Asunto(s)
Epilepsia/terapia , Resultado del Tratamiento , Estimulación del Nervio Vago/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticonvulsivantes/uso terapéutico , Niño , Electroencefalografía/métodos , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
20.
Epilepsy Behav ; 20(1): 57-63, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21144802

RESUMEN

OBJECTIVE: The goal of this study was to assess the efficacy and safety of vagus nerve stimulation in a consecutive series of adults and children with treatment-resistant epilepsy (TRE). METHODS: In this retrospective review of a prospectively created database of 436 consecutive patients who underwent vagus nerve stimulator implantation for TRE between November 1997 and April 2008, there were 220 (50.5%) females and 216 (49.5%) males ranging in age from 1 to 76 years at the time of implantation (mean: 29.0 ± 16.5). Thirty-three patients (7.6%) in the primary implantation group had inadequate follow-up (<3 months from implantation) and three patients had early device removal because of infection and were excluded from seizure control outcome analyses. RESULTS: Duration of vagus nerve stimulation treatment varied from 10 days to 11 years (mean: 4.94 years). Mean seizure frequency significantly improved following implantation (mean reduction: 55.8%, P<0.0001). Seizure control ≥ 90% was achieved in 90 patients (22.5%), ≥ 75% seizure control in 162 patients (40.5%), ≥ 50% improvement in 255 patients (63.75%), and <50% improvement in 145 patients (36.25%). Permanent injury to the vagus nerve occurred in 2.8% of patients. CONCLUSION: Vagus nerve stimulation is a safe and effective palliative treatment option for focal and generalized TRE in adults and children. When used in conjunction with a multidisciplinary and multimodality treatment regimen including aggressive antiepileptic drug regimens and epilepsy surgery when appropriate, more than 60% of patients with TRE experienced at least a 50% reduction in seizure burden. Good results were seen in patients with non-U.S. Food and Drug Administration-approved indications. Prospective, randomized trials are needed for patients with generalized epilepsies and for younger children to potentially expand the number of patients who may benefit from this palliative treatment.


Asunto(s)
Epilepsia/terapia , Estimulación del Nervio Vago , Anciano , Niño , Preescolar , Bases de Datos Factuales , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA