Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894841

RESUMEN

This work presents the results of research on obtaining chitosan (CS) films containing on their surface ciprofloxacin (CIP). A unique structure was obtained that not only gives new properties to the films, but also changes the way of coverage and structure of the surface. The spectroscopic test showed that in the process of application of CIP on the surface of CS film, CIP was converted from its crystalline form to an amorphic one, hence improving its bioavailability. This improved its scope of microbiological effect. The research was carried out on the reduction of CIP concentration during the process of CIP adhesion to the surface of chitosan films. The antibacterial activity of the CS films with and without the drug was evaluated in relation to Escherichia coli and Staphylococcus aureus, as well as Candida albicans and Penicillium expansum. Changes in the morphology and roughness of membrane surfaces after the antibacterial molecule adhesion process were tested with atomic force microscopy (AFM) and scanning electron microscopy (SEM). Structural analysis of CS and its modifications were confirmed with Fourier-transform spectroscopy in the infrared by an attenuated total reflectance of IR radiation (FTIR-ATR) and solid-state nuclear magnetic resonance (NMR).


Asunto(s)
Quitosano , Quitosano/química , Ciprofloxacina/farmacología , Ciprofloxacina/química , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/química , Espectroscopía de Resonancia Magnética
2.
Mar Drugs ; 19(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922254

RESUMEN

This paper presents a comparative study on chitosan degradation in organic acid solutions according to their different dissociation characteristics. More precisely, the aim of the study was to determine the kinetics of the degradation process depending on the different acid dissociation constants (pKa values). The scientists involved in chitosan to date have focused mainly on acetic acid solutions. Solutions of lactic, acetic, malic, and formic acids in concentrations of 3% wt. were used in this research. The progress of degradation was determined based on the intrinsic viscosity measurement, GPC/SEC chromatographic analysis, and their correlation. Changes in the viscosity parameters were performed at a temperature of 20 °C ± 1 °C and a timeframe of up to 168 h (7 days). The chemical structure and DDA of the initial chitosan were analyzed using 1H-NMR spectroscopy analysis. The results of this study can be considered of high importance for the purpose of electrospinning, production of micro- and nano-capsules for drug delivery, and other types of processing. Understanding the influence of the dissociation constant of the solvent on the kinetics of chitosan degradation will allow the selection of an appropriate medium, ensuring an effective and stable spinning process, in which the occurrence of polymer degradation is unfavorable.


Asunto(s)
Ácidos/química , Quitosano/química , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Temperatura , Viscosidad
3.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948383

RESUMEN

The aim of the research was to check whether it is possible to use fragments of type IV collagen to obtain, as a result of self-assembling, stable spatial structures that could be used to prepare new materials useful in regenerative medicine. Collagen IV fragments were obtained by using DMT/NMM/TosO- as a coupling reagent. The ability to self-organize and form stable spatial structures was tested by the CD method and microscopic techniques. Biological studies covered: resazurin assay (cytotoxicity assessment) on BJ, BJ-5TA and C2C12 cell lines; an alkaline version of the comet assay (genotoxicity), Biolegend Legendplex human inflammation panel 1 assay (SC cell lines, assessment of the inflammation activity) and MTT test to determine the cytotoxicity of the porous materials based on collagen IV fragments. It was found that out of the pool of 37 fragments (peptides 1-33 and 2.1-2.4) reconstructing the outer sphere of collagen IV, nine fragments (peptides: 2, 4, 5, 6, 14, 15, 25, 26 and 30), as a result of self-assembling, form structures mimicking the structure of the triple helix of native collagens. The stability of spatial structures formed as a result of self-organization at temperatures of 4 °C, 20 °C, and 40 °C was found. The application of the MST method allowed us to determine the Kd of binding of selected fragments of collagen IV to ITGα1ß1. The stability of the spatial structures of selected peptides made it possible to obtain porous materials based on their equimolar mixture. The formation of the porous materials was found for cross-linked structures and the material stabilized only by weak interactions. All tested peptides are non-cytotoxic against all tested cell lines. Selected peptides also showed no genotoxicity and no induction of immune system responses. Research on the use of porous materials based on fragments of type IV collagen, able to form stable spatial structures as scaffolds useful in regenerative medicine, will be continued.


Asunto(s)
Materiales Biocompatibles/metabolismo , Colágeno Tipo IV/metabolismo , Péptidos/metabolismo , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo IV/síntesis química , Colágeno Tipo IV/química , Humanos , Integrinas/metabolismo , Ensayo de Materiales , Ratones , Péptidos/síntesis química , Péptidos/química , Medicina Regenerativa
4.
Chem Biodivers ; 16(11): e1900339, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31557397

RESUMEN

The aim of the study was the assessment of the ability of short peptides to form aggregates under physiological conditions. The dipeptides studied were derived from different aromatic amino acids (heteroaromatic peptides). Tripeptides were obtained from two distinct aromatic amino acids and cysteine or methionine residue in the C-terminal, N-terminal, or central position. The ability of the peptides to form fibrous aggregates under physiological conditions was evaluated using three independent methods: the Congo Red assay, the Thioflavin T assay, and microscopic examinations using normal and polarized light. Materials potentially useful for regenerative medicine were selected based on their cytotoxicity to the endothelial cell line EA.hy 926 and physicochemical properties of films formed by peptides. The required parameters of biocompatibility were fulfilled by H-PheCysTrp-OH, H-PheCysTyr-OH, H-PheTyrMet-OH, and H-TrpTyr-OH.


Asunto(s)
Aminoácidos Aromáticos/química , Péptidos/química , Aminoácidos Aromáticos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Péptidos/síntesis química , Péptidos/farmacología , Agregado de Proteínas , Técnicas de Síntesis en Fase Sólida
5.
Molecules ; 23(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498711

RESUMEN

This study investigates the propensity of short peptides to self-organize and the influence of aggregates on cell cultures. The dipeptides were derived from both enantiomers of identical aromatic amino acids and tripeptides were prepared from two identical aromatic amino acids with one cysteine or methionine residue in the C-terminal, N-terminal, or central position. The formation or absence of fibrous structures under physiological conditions was established using Congo Red and Thioflavine T assays as well as by microscopic examination using normal and polarized light. The in vitro stability of the aggregates in buffered saline solution was assessed over 30 days. Materials with potential for use in regenerative medicine were selected based on the cytotoxicity of the peptides to the endothelial cell line EA.hy 926 and the wettability of the surfaces of the films, as well as using scanning electron microscopy. The criteria were fulfilled by H-dPhedPhe-OH, H-dCysdPhedPhe-OH, H-CysTyrTyr-OH, H-dPhedPhedCys-OH, H-TyrTyrMet-OH, and H-TyrMetTyr-OH. Our preliminary results suggest that the morphology and cell viability of L919 fibroblast cells do not depend on the stereochemistry of the self-organizing peptides.


Asunto(s)
Aminoácidos/química , Dipéptidos/química , Oligopéptidos/química , Andamios del Tejido , Animales , Benzotiazoles , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Rojo Congo , Dipéptidos/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones , Oligopéptidos/farmacología , Agregado de Proteínas , Medicina Regenerativa , Tiazoles , Ingeniería de Tejidos
6.
Sci Rep ; 14(1): 7310, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538710

RESUMEN

This paper presents active analgesic and anti-inflammatory dressings based on cotton woven material with surface functionalization enabling drug implementation. For this purpose, lactide was polymerized on the surface of cotton textiles to achieve better compatibility with hydrophobic drug and polylactide (PLA)-based macromolecules. Subsequently, ibuprofen-loaded PLA and PLA-PEG were implemented through the exhausting method. Such material was tested for cytotoxicity (toward L929 mouse fibroblasts) and anti-inflammatory activity (towards human Hs68 fibroblasts) based on the secretion of pro-inflammatory cytokines IL-1ß and TNF-α. The results showed that the drug attachment and its performance are influenced by a combination of mercerization, bleaching and polylactide grafting, and the release of ibuprofen depends on the drug-loaded layer structure. Moreover, we show that cotton woven fabric with ibuprofen-loaded PLA and PLA-PEG cover layers had anti-inflammatory properties. These new dressings may open possibilities for developing prolonged analgesic and anti-inflammatory materials for wound healing or transdermal drug delivery.


Asunto(s)
Antiinflamatorios , Ibuprofeno , Ratones , Animales , Humanos , Ibuprofeno/farmacología , Ibuprofeno/química , Antiinflamatorios/farmacología , Poliésteres/química , Textiles , Analgésicos
7.
Polymers (Basel) ; 16(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399839

RESUMEN

Chitosan, a well-established biomaterial known for its biocompatibility, biodegradability, and bioactivity, has been the focus of extensive research in recent years. This study explores the enhancement of chitosan fibers' properties through wet impregnation with either ursolic acid (UA) or cross-linking with tripolyphosphate (TPP). In the first experiment, chitosan fibers were treated with UA, for varying immersion set points (1, 2, 4, 6, and 8 h). FTIR, SEM, and UV-Vis spectroscopy analyses demonstrated a chemical reaction between chitosan and UA, with stability reached after 2 h of immersion. Antibacterial testing revealed that chitosan fibers impregnated with UA exhibited significant antibacterial activity against Gram-positive bacteria, notably Staphylococcus aureus. The second experiment involved modifying chitosan fibers' surfaces with a 1% w/v TPP solution for the same periods of time (1, 2, 4, 6, and 8 h). Subsequently, the investigation involved FTIR, SEM, and dynamometry analyses, which revealed successful cross-linking between chitosan and TPP ions, resulting in improved tensile strength after 2 h of immersion. This dual-approach study highlights the potential of chitosan fibers for diverse applications, from wound-healing dressings to antibacterial materials against Gram-positive bacteria.

8.
Materials (Basel) ; 17(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38541423

RESUMEN

Poly(lactic acid) has great potential in sectors where degradability is an important advantage due to its polymer nature. The medical, pharmaceutical, and packaging industries have shown interest in using PLA. To overcome the limitations of stiffness and brittleness in the polymer, researchers have conducted numerous modifications to develop fibers with improved properties. One such modification involves using plasticizing modifiers that can provide additional and desired properties. The scientific reports indicate that low-molecular-weight esters (LME) (triethyl citrate and bis (2-ethylhexyl) adipate) affect the plasticization of PLA. However, the research is limited to flat structures, such as films, casts, and extruded shapes. A study was conducted to investigate the impact of esters on the process of forming, the properties, and the morphology of fibers formed through the melt-spinning method. It was found that the modified PLA required different spinning and drawing conditions compared to the unmodified polymer. DSC, FTIR, WAXD, and GPC/SEC analyses were performed for the modified fibers. Mechanical tests and morphology evaluations using SEM microscopy were also conducted. The applied plasticizers lowered the temperature of the spinning process by 40 °C, and allowed us to obtain a higher degree of crystallinity and a better tenacity at a lower draw ratio. GPC/SEC analysis confirmed that the polymer-plasticizer interaction is physical because the booth plasticizer peaks were separated in the chromatographic columns. The use of LME in fibers significantly reduces the temperature of the spinning process, which reduces production costs. Additives significantly change the production process and the structure of the fiber depending on their rate, which may affect the properties, e.g., the rate of degradation. We can master the degree of crystallinity through the variable amount of LME. The degree of crystallization of the polymers has a significant influence on polymer application.

9.
Nanomaterials (Basel) ; 13(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38133047

RESUMEN

Air pollution is becoming a serious issue because it negatively impacts the quality of life. One of the first most useful self-defense approaches against air pollution are face masks. Typically made of non-renewable petroleum-based polymers, these masks are harmful to the environment, and they are mostly disposable. Poly(butylene succinate) (PBS) is regarded as one of the most promising materials because of its exceptional processability and regulated biodegradability in a range of applications. In this regard, nanofiber-based face masks are becoming more and more popular because of their small pores, light weight, and excellent filtration capabilities. Centrifugal spinning (CS) provides an alternative method for producing nanofibers from various materials at high speeds and low costs. This current study aimed to investigate the effect of processing parameters on the resultant PBS fiber morphology. Following that, the usability of PBS nonwoven as a filter media was investigated. The effects of solution concentration, rotating speed, and needle size have been examined using a three-factorial Box-Behnken experimental design. The results revealed that PBS concentration had a substantial influence on fiber diameter, with a minimum fiber diameter of 172 nm attained under optimum production conditions compared to the anticipated values of 166 nm. It has been demonstrated that the desired function and the Box-Behnken design are useful instruments for predicting the process parameters involved in the production of PBS nanofibers. PBS filters can achieve an excellent efficiency of more than 98% with a pressure drop of 238 Pa at a flow rate of 85 L/min. The disposable PBS filter media was able to return to nature after use via hydrolysis processes. The speed and cost-effectiveness of the CS process, as well as the environmentally benign characteristics of the PBS polymer, may all contribute considerably to the development of new-age filters.

10.
Polymers (Basel) ; 14(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566859

RESUMEN

Chitosan acquires bacteriostatic properties via protonation of its amino groups. However, much of the literature assumes that chitosan itself inhibits the growth of bacteria. This article presents a comparative study of chitosan nonwovens modified with various acids, including acetic, propionic, butyric, and valeric organic acids, as well as hydrochloric acid. The aim was to determine which acid salts influence the antibacterial and antifungal activity of chitosan-based materials. Two methods were used to modify (formation of ammonium salts) the chitosan nonwovens: First, acid vapors (gassing process) were used to find which salt of chitosan had the best antibacterial properties. Based on the results, the most effective acid was prepared in a solution in ethanol. The influence of the acid concentration in ethanol, the time of treatment of chitosan materials with acid solution, and the rinsing process of modified nonwovens on the antimicrobial activity of the modified materials was investigated. The modified materials were subjected to microbiological tests. Each of the modified materials was placed in bacterial inoculum. The cultures were tested on agar to observe their microbial activity. Toxicity to human red blood cells was also investigated. A reduction in the number of bacterial cells was observed for the S. aureus strain with chitosan salt modified with 10% acetic acid in ethanol. The antibacterial activity of the chitosan salts increased with the percentage of acid salts formed on the surface of the solid material (decreasing numbers of bacterial colonies or no growth). No reduction in growth was observed for the E. coli strain. The chitosan samples were either inactive or completely eliminated the bacterial cells. Antimicrobial activity was observed for chitosan salts with hydrochloric acid and acetic acid. Finally, 1H-NMR spectroscopy and FTIR spectroscopy were used to confirm the incorporation of the acid groups to the amino groups of chitosan.

11.
Materials (Basel) ; 15(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35744381

RESUMEN

This paper presents a method for the synthesis of ammonium alginate by interphase gas-solid reaction. It was confirmed by FTIR ATR spectroscopy analysis that a full substitution of acid groups by ammonium groups on the surface of powdered alginic acid was performed. Comparative studies on the properties of ammonium alginate solutions obtained by interphase reaction with those prepared by the classical method of dissolving alginic acid in an ammonia solution showed that the rheological properties of the solutions from these two derivatives do not differ significantly. Moreover, it was shown that aqueous solutions of ammonium alginate are more stable over time than solutions of sodium alginate. It was confirmed that ammonium alginate and sodium alginate are typical polyelectrolytes, as the addition of a low molecular weight electrolyte to their solutions resulted in a decrease in viscosity.

12.
Materials (Basel) ; 15(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36143745

RESUMEN

New scaffold materials composed of biodegradable components are of great interest in regenerative medicine. These materials should be: stable, nontoxic, and biodegrade slowly and steadily, allowing the stable release of biodegradable and biologically active substances. We analyzed peptide-polysaccharide conjugates derived from peptides containing RGD motif (H-RGDS-OH (1), H-GRGDS-NH2 (2), and cyclo(RGDfC) (3)) and polysaccharides as scaffolds to select the most appropriate biomaterials for application in regenerative medicine. Based on the results of MTT and Ki-67 assays, we can state that the conjugates containing calcium alginate and the ternary nonwoven material were the most supportive of muscle tissue regeneration. Scanning electron microscopy imaging and light microscopy studies with hematoxylin-eosin staining showed that C2C12 cells were able to interact with the tested peptide-polysaccharide conjugates. The release factor (Q) varied depending on both the peptide and the structure of the polysaccharide matrix. LDH, Alamarblue®, Ki-67, and cell cycle assays indicated that peptides 1 and 2 were characterized by the best biological properties. Conjugates containing chitosan and the ternary polysaccharide nonwoven with peptide 1 exhibited very high antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. Overall, the results of the study suggested that polysaccharide conjugates with peptides 1 and 2 can be potentially used in regenerative medicine.

13.
Materials (Basel) ; 14(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073748

RESUMEN

Green electrospun materials are gaining popularity in the quest for a more sustainable environment for human life. Bee pollen (BP) is a valuable apitherapeutic product and has many beneficial features such as antioxidant and antibacterial properties. Alginate is a natural and low-cost polymer. Both natural materials show good compatibility with human tissues for biomedical applications and have no toxic effect on the environment. In this study, bee pollen-loaded sodium alginate and polyvinyl alcohol (SA/PVA) nanofibrous mats were fabricated by the electrospinning technique. The green electrospun nanofibrous mats were analyzed by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimeter (DSC). According to the findings of the study, the toxin-free electrospinning method is suitable for producing green nanomaterial. Because of the useful properties of the bee pollen and the favorable biocompatibility of the alginate fibers, the bee pollen-loaded SA/PVA electrospun mats have the potential for use in a variety of biomedical applications.

14.
Materials (Basel) ; 14(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34832352

RESUMEN

Chemicals and industrial gases endanger both human health and the environment. The inhalation of colourless ammonia gas (NH3) can cause organ damage or even death in humans. Colourimetric materials are becoming more popular in the search for smart textiles for both fashion and specific occupational applications. Colourimetric textile sensors based on indicator dyes could be very useful for detecting strong gaseous conditions and monitoring gas leaks. In this study, black carrot extract (BCE) as a natural indicator dye and polyurethane (PU) polymer were used to develop a colourimetric sensor by electrospinning. The properties of the BCE/PU nanofibrous mats were characterized by the Fourier transform infrared spectrum (FTIR) and a scanning electron microscope (SEM). The BCE caused a change in the morphology of the PU nanofibrous mat. To evaluate the colour shift due to NH3 vapour, the BCE/PU nanofibrous mats were photographed by a camera, and software was used to obtain the quantitative colour data (CIE L*a*b). The BCE/PU nanofibrous exhibited a remarkable colour change from pink-red to green-blue under NH3 vapour conditions with a fast response time (≤30 s). These findings showed that colourimetric nanofibrous textile sensors could be a promising in situ material in protective clothing that changes colour when exposed to harmful gases.

15.
Polymers (Basel) ; 13(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34771207

RESUMEN

Plastic products, especially in the packaging industry, have become the main commodities penetrating virtually every aspect of our lives. Unfortunately, their omnipresence is not neutral to the natural environment. Pollution in the form of microplastics is a global problem. Therefore, green technologies that enter into the circular economy become an important topic. As part of the research work, the modification of poly(lactic acid) has been studied for use in the packaging industry. Due to its intrinsic rigidity, plasticizing substances had to be introduced in PLA in order to improve its plastic deformability. Both high-molecular compounds such as ethoxylated lauryl alcohol, block copolymer of ethylene oxide and propylene oxide, and ethoxylated stearic acid as well as low-molecular compounds such as di-2-ethylhexyl adipate, di-2-ethylhexyl sebacate, and triethyl citrate were used. The samples extruded from plasticized polymers were characterized using differential scanning calorimetry, thermal gravimetric analysis, and mechanical properties including Young's modulus. The melt flow rate (MFR) and molar mass distribution were determined. For all modified samples the glass transition temperature, depending on the plasticizer used, was shifted towards lower values compared to the base polymer. The best result was obtained for di-2-ethylhexyl adipate (ADO) and di-2-ethylhexyl sebacate (SDO). The elongation at break increased significantly for ADO at about 21%. The highest elongation was obtained for SDO (about 35%), although it obtained a higher glass temperature. The degradation of the polymer was not observed for both plasticizers. For these plasticizers (ADO and SDO) it also lowered Young's module by about 26%, and at the infrared spectrum deformation of peaks were observed, which may indicate the interaction of the ester carbonyl group of PLA with plasticizers. Therefore it can be concluded that they are good modifiers. The selected plasticizers that are used in the production of food contact materials, in particular in the production of PVC (polyvinyl chloride) food films, also exhibited great potential to be applied to PLA food films, and exhibit better properties than the citrate, which are indicated in many publications as PLA plasticizers.

16.
Polymers (Basel) ; 12(5)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370261

RESUMEN

Active dressings based on natural polymers are becoming increasingly popular on the market. One of such polymers is alginate, which is characterized by biodegradability, resorbability, has no carcinogenic properties, does not have allergenic or hemostatic properties, and has a confirmed lack of toxicity. However, this polymer does not show biocidal and biostatic properties, therefore the purpose of this research was to select the appropriate conditions for the production of calcium alginate fibers modified with nano titanium dioxide and nano zinc oxide. It was assumed that the presence of nano metal oxide fillers will give antibacterial properties to formed fibers, which were used to form nonwovens. The following article presents a comparative analysis of nonwovens made of alginate fibers, without nano additives, with nonwovens made of alginate fibers containing in their structure 7% titanium dioxide and nonwovens made of alginate fibers containing 2% ZnO. The selection of the nano additive content was determined by the spinning ability of the developed polymer solutions. Based on the results contained in the article, it was found that the introduction of modifiers in the structure of fibers increases the diameter of the fiber pores, which improves the sorption and retention properties of the obtained fibers, and also gives differentiated antibacterial properties to the obtained nonwovens depending on the type of nano additive used. Greater activity against Escherichia coli, Staphylococcus aureus strains and Aspergillus Niger molds was shown in nonwovens made of 2% ZnO modified fibers compared to nonwovens made from TiO2 modified fibers.

17.
Materials (Basel) ; 13(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244687

RESUMEN

Chitosan is an environmentally friendly agent that is used to achieve the antimicrobial properties of textiles. Nowadays, the binding of chitosan to the textiles has been thoroughly researched due to the increasing demands on the stability of achieved properties during the textile care processes. Most crosslinking agents for chitosan are not safe for humans or environment, such as glutaric aldehyde (GA) and formaldehyde derivatives. Eco-friendly polycarboxyilic acids (PCAs) are usually used in after-treatment. In this work, chitosan powder was dissolved in citric acid with sodium hydrophosphite (SHP) as a catalyst. Standard cotton (CO) and polyester/cotton (PES/CO) fabrics were pretreated in 20% NaOH, similar to mercerization, in order to open the structure of the cotton fibers and hydrolyze polyester fibers, continued by finishing in the gelatin chitosan bath. Afterwards, the hot rinsing process, followed by drying and curing, closed the achieved structure. The main objective was to achieve durable antimicrobial properties to multiple maintenance cycles CO and PES/CO fabric in order to apply it in a hospital environment. The characterization of fabrics was performed after treatment, first and fifth washing cycles according ISO 6330:2012 by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR-ATR), electrokinetic analysis (EKA), by the determination of tensile properties and mechanical damage (wear), and the antimicrobial activity. The application of 20% NaOH led to the swelling and mercerization of cotton cellulose, and hydrolysis of polyester, resulting in better mechanical properties. It has been confirmed that the chitosan particles were well implemented into the cotton fiber and onto to the polyester component of PES/CO blend. The presence of chitosan was confirmed after five washing cycles, but in lower quantity. However, achieved antimicrobial activity is persistent.

18.
Materials (Basel) ; 13(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664253

RESUMEN

New materials that are as similar as possible in terms of structure and biology to the extracellular matrix (external environment) of cells are of great interest for regenerative medicine. Oligoproline and oligohydroxyproline derivatives (peptides 2-5) are potential mimetics of collagen fragments. Peptides 2-5 have been shown to be similar to the model collagen fragment (H-Gly-Hyp-Pro-Ala-Hyp-Pro-OH, 1) in terms of both their spatial structure and biological activity. In this study, peptides 2-5 were covalently bound to nonwovens based on chitosan and calcium alginate. Incorporation of the peptides was confirmed by Fourier transform -infrared (FT-IR) and zeta potential measurements. Biological studies (cell metabolic activity by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and Live/Dead assay) proved that the obtained peptide-polysaccharide conjugates were not toxic to the endothelial cell line EA.hy 926. In many cases, the conjugates had a highly affirmative influence on cell proliferation. The results of this study show that conjugates of chitosan and calcium alginate with oligoproline and oligohydroxyproline derivatives have potential for use in regenerative medicine.

19.
J Appl Biomater Funct Mater ; 17(2): 2280800018793818, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30176747

RESUMEN

BACKGROUND: Biocompatible materials are used for treatment of blood circulatory system diseases, especially abdominal aortic aneurysms. The most popular and often used are knitted and polymer vascular patches. The aim of this study was to optimize the manufacturing process of implantable materials, ensuring antibacterial activity useful for treating abdominal aorta aneurysms. METHODS: The vascular patch was manufactured from Trevira® yarn. The parameters of the intermediate product and vascular patch were tested according to standard procedures. RESULTS: The vascular patch, manufactured from microsilver-containing yarn, with crimps on the surface of the patch, has been found useful for treatment of abdominal aorta aneurysms. Introducing crimps on the surface of the patch resulted in reduction of water permeability and enabled cutting of the graft at various angles without fraying at the cut ends of the biomaterial. The final vascular patch was marked by a gradual release of silver within 48 hours. CONCLUSIONS: On the basis of the performed test, it has been demonstrated that an implantable material for the treatment of abdominal aorta aneurysms was obtained, and that it can be considered as an alternative for currently used vascular patches. The final vascular patch was marked by a gradual release of silver during the first period of incubation. The antibacterial properties of the final product were confirmed by observation of a significant reduction in the number of Staphylococcus aureus and Klebsiella pneumoniae bacterial colonies.


Asunto(s)
Antibacterianos/química , Aneurisma de la Aorta Abdominal/cirugía , Vendajes , Materiales Biocompatibles/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/prevención & control , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Plata/química , Plata/metabolismo , Staphylococcus aureus/efectos de los fármacos , Agua/química
20.
Materials (Basel) ; 12(6)2019 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-30909574

RESUMEN

In spite of intensively conducted research allowing for the development of more and more advanced wound dressing materials, there is still a need for dressings that stimulate not only reparative and regenerative processes, but also have a positive effect on infected and/or difficult-to-heal wounds. Porous dressing materials based on butyric-acetic chitin co-polyester containing 90% of butyryl and 10% of acetyl groups (BAC 90/10) can also be included in the group mentioned above. Two types of dressings were obtained by the salt leaching method, i.e. a porous sponge Medisorb R and Medisorb Ag with an antibacterial additive. The aim of the study was to evaluate biological effects of porous Medisorb R and Medisorb Ag dressings under in vitro and in vivo conditions. In an in vitro biodegradation test, no mass loss of Medisorb R dressing was observed within 14 days of incubation in physiological fluids at 37 °C. However, on the basis of the FTIR (Fourier Transform Infrared Spectroscopy) tests, surface degradation of Medisorb R dressing was observed. Additionally, the antibacterial activity of the porous Medisorb Ag dressing containing microsilver as an antibacterial additive was confirmed. The in vivo studies included inflammatory activity, skin irritation and sensitisation tests, as well an assessment of local effect after contact with subcutaneous tissue up to 6 months and skin wounds up to 21 days. In the in vivo tests, the dressings exhibited neither effects of skin irritation nor sensitisation. Under macroscopic examination, in full thickness defects of subcutaneous tissue and skin, the dressings caused wound healing with no inflammation, undergoing the most gradual biodegradation between weeks 4 and 8, and the observed differences were statistically significant. In the histological assessment, a weakened, limited inflammatory process associated with degradation of the material has been observed. The process of skin wound healing under Medisorb R dressing in the early period was accelerated compared to that observed in the control group with a gauze dressing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA