Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(38): 10649-54, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601670

RESUMEN

The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.


Asunto(s)
Antígeno CTLA-4/genética , Lectinas Tipo C/genética , Antígenos Comunes de Leucocito/genética , Activación de Linfocitos/genética , Lectinas de Unión a Manosa/genética , Receptores de Superficie Celular/genética , Animales , Presentación de Antígeno/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígeno CTLA-4/inmunología , Regulación de la Expresión Génica/genética , Humanos , Tolerancia Inmunológica/genética , Lectinas Tipo C/inmunología , Antígenos Comunes de Leucocito/inmunología , Activación de Linfocitos/inmunología , Receptor de Manosa , Lectinas de Unión a Manosa/inmunología , Ratones , Proteínas Proto-Oncogénicas c-bcl-6/genética , Receptores de Superficie Celular/inmunología , Linfocitos T Citotóxicos/inmunología , Activación Transcripcional/genética
2.
J Mol Cell Cardiol ; 65: 19-32, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24060583

RESUMEN

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and a major cause of stroke. In the mammalian heart the gap junction proteins connexin40 (Cx40) and connexin43 (Cx43) are strongly expressed in the atrial myocardium mediating effective propagation of electrical impulses. Different heterozygous mutations in the coding region for Cx40 were identified in patients with AF. We have generated transgenic Cx40A96S mice harboring one of these mutations, the loss-of-function Cx40A96S mutation, as a model for atrial fibrillation. Cx40A96S mice were characterized by immunochemical and electrophysiological analyses. Significantly reduced atrial conduction velocities and strongly prolonged episodes of atrial fibrillation were found after induction in Cx40A96S mice. Analyses of the gating properties of Cx40A96S channels in cultured HeLa cells also revealed significantly lower junctional conductance and enhanced sensitivity voltage gating of Cx40A96S in comparison to Cx40 wild-type gap junctions. This is caused by reduced open probabilities of Cx40A96S gap junction channels, while single channel conductance remained the same. Similar to the corresponding patient, heterozygous Cx40A96S mice revealed normal expression levels and localization of the Cx40 protein. We conclude that heterozygous Cx40A96S mice exhibit prolonged episodes of induced atrial fibrillation and severely reduced atrial conduction velocities similar to the corresponding human patient.


Asunto(s)
Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Conexinas/genética , Sistema de Conducción Cardíaco/fisiopatología , Mutación/genética , Animales , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Electrocardiografía , Fibrosis Endomiocárdica/metabolismo , Fibrosis Endomiocárdica/patología , Fibrosis Endomiocárdica/fisiopatología , Mapeo Epicárdico , Uniones Comunicantes/genética , Células HeLa , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Activación del Canal Iónico , Ratones , Ratones Transgénicos , Transporte de Proteínas , Factores de Tiempo , Transfección , Ultrasonografía , Proteína alfa-5 de Unión Comunicante
3.
Theor Appl Genet ; 126(4): 1039-52, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23299900

RESUMEN

Tuber yield, starch content, starch yield and chip color are complex traits that are important for industrial uses and food processing of potato. Chip color depends on the quantity of reducing sugars glucose and fructose in the tubers, which are generated by starch degradation. Reducing sugars accumulate when tubers are stored at low temperatures. Early and efficient selection of cultivars with superior yield, starch yield and chip color is hampered by the fact that reliable phenotypic selection requires multiple year and location trials. Application of DNA-based markers early in the breeding cycle, which are diagnostic for superior alleles of genes that control natural variation of tuber quality, will reduce the number of clones to be evaluated in field trials. Association mapping using genes functional in carbohydrate metabolism as markers has discovered alleles of invertases and starch phosphorylases that are associated with tuber quality traits. Here, we report on new DNA variants at loci encoding ADP-glucose pyrophosphorylase and the invertase Pain-1, which are associated with positive or negative effect with chip color, tuber starch content and starch yield. Marker-assisted selection (MAS) and marker validation were performed in tetraploid breeding populations, using various combinations of 11 allele-specific markers associated with tuber quality traits. To facilitate MAS, user-friendly PCR assays were developed for specific candidate gene alleles. In a multi-parental population of advanced breeding clones, genotypes were selected for having different combinations of five positive and the corresponding negative marker alleles. Genotypes combining five positive marker alleles performed on average better than genotypes with four negative alleles and one positive allele. When tested individually, seven of eight markers showed an effect on at least one quality trait. The direction of effect was as expected. Combinations of two to three marker alleles were identified that significantly improved average chip quality after cold storage and tuber starch content. In F1 progeny of a single-cross combination, MAS with six markers did not give the expected result. Reasons and implications for MAS in potato are discussed.


Asunto(s)
Cruzamiento/métodos , Marcadores Genéticos/genética , Fenotipo , Tubérculos de la Planta/crecimiento & desarrollo , Selección Genética , Solanum tuberosum/genética , Análisis de Varianza , Cruzamientos Genéticos , Estudios de Asociación Genética , Genotipo , Alemania , Glucosa-1-Fosfato Adenililtransferasa/genética , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Solanum tuberosum/crecimiento & desarrollo , Estadísticas no Paramétricas
4.
Plant Cell Environ ; 35(12): 2143-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22621197

RESUMEN

Biochemical, molecular and genetic studies emphasize the role of the potato vacuolar invertase Pain-1 in the accumulation of reducing sugars in potato tubers upon cold storage, and thereby its influence on the quality of potato chips and French fries. Previous studies showed that natural Pain-1 cDNA alleles were associated with better chip quality and higher tuber starch content. In this study, we focused on the functional characterization of these alleles. A genotype-dependent transient increase of total Pain-1 transcript levels in cold-stored tubers of six different genotypes as well as allele-specific expression patterns were detected. 3D modelling revealed putative structural differences between allelic Pain-1 proteins at the molecule's surface and at the substrate binding site. Furthermore, the yeast SUC2 mutant was complemented with Pain-1 cDNA alleles and enzymatic parameters of the heterologous expressed proteins were measured at 30 and 4 °C. Significant differences between the alleles were detected. The observed functional differences between Pain-1 alleles did not permit final conclusions on the mechanism of their association with tuber quality traits. Our results show that natural allelic variation at the functional level is present in potato, and that the heterozygous genetic background influences the manifestation of this variation.


Asunto(s)
Alelos , Solanum tuberosum/enzimología , beta-Fructofuranosidasa/genética , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Genotipo , Modelos Moleculares , Reacción en Cadena de la Polimerasa , Conformación Proteica , ARN Mensajero/genética , beta-Fructofuranosidasa/química
5.
BMC Plant Biol ; 10: 271, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21143910

RESUMEN

BACKGROUND: Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown. RESULTS: For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified. CONCLUSIONS: Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato's reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and chip quality, tuber starch content and starch yield will facilitate the selection of superior potato genotypes in breeding programs.


Asunto(s)
Variación Genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , beta-Fructofuranosidasa/genética , Alelos , Secuencia de Aminoácidos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Biblioteca Genómica , Genotipo , Haplotipos , Isoenzimas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Fenotipo , Filogenia , Proteínas de Plantas/clasificación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Solanum tuberosum/enzimología , beta-Fructofuranosidasa/clasificación
6.
Front Plant Sci ; 4: 423, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24294214

RESUMEN

Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA