Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Zoo Biol ; 42(1): 98-106, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35815730

RESUMEN

Captive chimpanzees (Pan troglodytes) mature earlier in body mass and have a greater growth rate compared to wild individuals. However, relatively little is known about how growth parameters compare between chimpanzees living in different captive environments. To investigate, body mass was measured in 298 African sanctuary chimpanzees and was acquired from 1030 zoological and 442 research chimpanzees, using data repositories. An analysis of covariance, adjusting for age, was performed to assess same-sex body mass differences between adult sanctuary, zoological, and research populations. Piecewise linear regression was performed to estimate sex-specific growth rates and the age at maturation, which were compared between sexes and across populations using extra-sum-of-squares F tests. Adult body mass was greater in the zoological and resarch populations compared to the sanctuary chimpanzees, in both sexes. Male and female sanctuary chimpanzees were estimated to have a slower rate of growth compared with their zoological and research counterparts. Additionally, male sanctuary chimpanzees were estimated to have an older age at maturation for body mass compared with zoological and research males, whereas the age at maturation was similar across female populations. For both the zoological and research populations, the estimated growth rate was greater in males compared to females. Together, these data contribute to current understanding of growth and maturation in this species and suggest marked differences between the growth patterns of chimpanzees living in different captive environments.


Asunto(s)
Animales Salvajes , Pan troglodytes , Animales , Masculino , Femenino , Animales de Zoológico , Caracteres Sexuales
2.
Exp Physiol ; 107(1): 6-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743381

RESUMEN

NEW FINDINGS: What is the central question of this study? Endurance athletes demonstrate altered regional right ventricular (RV) wall mechanics, characterized by lower basal deformation, in comparison to non-athletic control subjects at rest. We hypothesized that regional adaptations at the RV base reflect an enhanced functional reserve capacity in response to haemodynamic volume loading. What is the main finding and its importance? Free wall RV longitudinal strain is elevated in response to acute volume loading in both endurance athletes and control subjects. However, the RV basal segment longitudinal strain response to acute volume infusion is greater in endurance athletes. Our findings suggest that training-induced cardiac remodelling might involve region-specific adaptation in the RV functional response to volume manipulation. ABSTRACT: Eccentric remodelling of the right ventricle (RV) in response to increased blood volume and repetitive haemodynamic load during endurance exercise is well established. Structural remodelling is accompanied by decreased deformation at the base of the RV free wall, which might reflect an enhanced functional reserve capacity in response to haemodynamic perturbation. Therefore, in this study we examined the impact of acute blood volume expansion on RV wall mechanics in 16 young endurance-trained men (aged 24 ± 3 years) and 13 non-athletic male control subjects (aged 27 ± 5 years). Conventional echocardiographic parameters and the longitudinal strain and strain rate were quantified at the basal and apical levels of the RV free wall. Measurements were obtained at rest and after 7 ml/kg i.v. Gelofusine infusion, with and without a passive leg raise. After infusion, blood volume increased by 12 ± 4 and 14 ± 5% in endurance-trained individuals versus control subjects, respectively (P = 0.264). Both endurance-trained individuals (8 ± 10%) and control subjects (7 ± 9%) experienced an increase in free wall strain from baseline, which was also similar following leg raise (7 ± 10 and 6 ± 10%, respectively; P = 0.464). However, infusion evoked a greater increase in basal longitudinal strain in endurance-trained versus control subjects (16 ± 14 vs. 6 ± 11%; P = 0.048), which persisted after leg raise (16 ± 18 vs. 3 ± 11%; P = 0.032). Apical longitudinal strain and RV free wall strain rates were not different between groups and remained unchanged after infusion across all segments. Endurance training results in a greater contribution of longitudinal myocardial deformation at the base of the RV in response to a haemodynamic volume challenge, which might reflect a greater region-specific functional reserve capacity.


Asunto(s)
Entrenamiento Aeróbico , Ventrículos Cardíacos , Adaptación Fisiológica , Adulto , Humanos , Masculino , Resistencia Física/fisiología , Función Ventricular Derecha/fisiología , Adulto Joven
3.
Exp Physiol ; 107(11): 1225-1240, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35993480

RESUMEN

NEW FINDINGS: What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right heart work in apnoea divers? What is the main finding and its importance? Compared with sex- and age-matched control subjects, divers experienced significantly less change in total pulmonary resistance in response to short-duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting that divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction might be beneficial during apnoea diving. ABSTRACT: Competitive apnoea divers dive repetitively to depths >50 m. During the final portions of ascent, divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume and increasing pulmonary artery pressure. We hypothesized that divers would have exaggerated hypoxic pulmonary vasoconstriction, leading to increased right heart work owing to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in divers. We recruited 16 divers (Divers) and 16 age- and sex-matched non-diving control subjects (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 min of isocapnic hypoxia (end-tidal partial pressure of O2  = 50 mmHg) were measured 1 h after ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than Controls after 20-30 min isocapnic hypoxia (change -3.85 ± 72.85 vs. 73.74 ± 91.06 dyns cm-5 , P = 0.0222). With sildenafil, Divers and Controls had similar blunted increases in total pulmonary resistance after 20-30 min of hypoxia. Divers also had a significantly lower systemic vascular resistance after sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest that this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization in hypoxaemic conditions.


Asunto(s)
Apnea , Vasoconstricción , Humanos , Hipoxia , Pulmón , Oxígeno , Citrato de Sildenafil , Método Doble Ciego , Estudios Cruzados
4.
Proc Natl Acad Sci U S A ; 116(33): 16177-16179, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358634

RESUMEN

In contrast to Andean natives, high-altitude Tibetans present with a lower hemoglobin concentration that correlates with reproductive success and exercise capacity. Decades of physiological and genomic research have assumed that the lower hemoglobin concentration in Himalayan natives results from a blunted erythropoietic response to hypoxia (i.e., no increase in total hemoglobin mass). In contrast, herein we test the hypothesis that the lower hemoglobin concentration is the result of greater plasma volume, rather than an absence of increased hemoglobin production. We assessed hemoglobin mass, plasma volume and blood volume in lowlanders at sea level, lowlanders acclimatized to high altitude, Himalayan Sherpa, and Andean Quechua, and explored the functional relevance of volumetric hematological measures to exercise capacity. Hemoglobin mass was highest in Andeans, but also was elevated in Sherpa compared with lowlanders. Sherpa demonstrated a larger plasma volume than Andeans, resulting in a comparable total blood volume at a lower hemoglobin concentration. Hemoglobin mass was positively related to exercise capacity in lowlanders at sea level and in Sherpa at high altitude, but not in Andean natives. Collectively, our findings demonstrate a unique adaptation in Sherpa that reorientates attention away from hemoglobin concentration and toward a paradigm where hemoglobin mass and plasma volume may represent phenotypes with adaptive significance at high altitude.


Asunto(s)
Adaptación Fisiológica , Mal de Altura/sangre , Hemoglobinas/genética , Volumen Plasmático/genética , Aclimatación/genética , Adulto , Altitud , Mal de Altura/genética , Mal de Altura/fisiopatología , Volumen Sanguíneo/genética , Volumen Sanguíneo/fisiología , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Humanos , Masculino , Perú/epidemiología , Volumen Plasmático/fisiología , Tibet/epidemiología
5.
Proc Natl Acad Sci U S A ; 116(40): 19905-19910, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527253

RESUMEN

Chimpanzees and gorillas, when not inactive, engage primarily in short bursts of resistance physical activity (RPA), such as climbing and fighting, that creates pressure stress on the cardiovascular system. In contrast, to initially hunt and gather and later to farm, it is thought that preindustrial human survival was dependent on lifelong moderate-intensity endurance physical activity (EPA), which creates a cardiovascular volume stress. Although derived musculoskeletal and thermoregulatory adaptations for EPA in humans have been documented, it is unknown if selection acted similarly on the heart. To test this hypothesis, we compared left ventricular (LV) structure and function across semiwild sanctuary chimpanzees, gorillas, and a sample of humans exposed to markedly different physical activity patterns. We show the human LV possesses derived features that help augment cardiac output (CO) thereby enabling EPA. However, the human LV also demonstrates phenotypic plasticity and, hence, variability, across a wide range of habitual physical activity. We show that the human LV's propensity to remodel differentially in response to chronic pressure or volume stimuli associated with intense RPA and EPA as well as physical inactivity represents an evolutionary trade-off with potential implications for contemporary cardiovascular health. Specifically, the human LV trades off pressure adaptations for volume capabilities and converges on a chimpanzee-like phenotype in response to physical inactivity or sustained pressure loading. Consequently, the derived LV and lifelong low blood pressure (BP) appear to be partly sustained by regular moderate-intensity EPA whose decline in postindustrial societies likely contributes to the modern epidemic of hypertensive heart disease.


Asunto(s)
Gasto Cardíaco , Ventrículos Cardíacos , Corazón/fisiología , Contracción Miocárdica , Resistencia Física , Presión , Adulto , Animales , Atletas , Presión Sanguínea , Gorilla gorilla , Cardiopatías , Hemodinámica , Humanos , Hipertensión , Masculino , Pan troglodytes , Fenotipo , Especificidad de la Especie , Adulto Joven
6.
J Physiol ; 599(5): 1685-1708, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33442904

RESUMEN

KEY POINTS: Iron acts as a cofactor in the stabilization of the hypoxic-inducible factor family, and plays an influential role in the modulation of hypoxic pulmonary vasoconstriction. It is uncertain whether iron regulation is altered in lowlanders during either (1) ascent to high altitude, or (2) following partial acclimatization, when compared to high-altitude adapted Sherpa. During ascent to 5050 m, the rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders; however, upon arrival to 5050 m, PASP levels were comparable in both groups, but the reduction in iron bioavailability was more prevalent in lowlanders compared to Sherpa. Following partial acclimatization to 5050 m, there were differential influences of iron status manipulation (via iron infusion or chelation) at rest and during exercise between lowlanders and Sherpa on the pulmonary vasculature. ABSTRACT: To examine the adaptational role of iron bioavailability on the pulmonary vascular responses to acute and chronic hypobaric hypoxia, the haematological and cardiopulmonary profile of lowlanders and Sherpa were determined during: (1) a 9-day ascent to 5050 m (20 lowlanders; 12 Sherpa), and (2) following partial acclimatization (11 ± 4 days) to 5050 m (18 lowlanders; 20 Sherpa), where both groups received an i.v. infusion of either iron (iron (iii)-hydroxide sucrose) or an iron chelator (desferrioxamine). During ascent, there were reductions in iron status in both lowlanders and Sherpa; however, Sherpa appeared to demonstrate a more efficient capacity to mobilize stored iron, compared to lowlanders, when expressed as a Δhepcidin per unit change in either body iron or the soluble transferrin receptor index, between 3400-5050 m (P = 0.016 and P = 0.029, respectively). The rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders during ascent; however, PASP was comparable in both groups upon arrival to 5050 m. Following partial acclimatization, despite Sherpa demonstrating a blunted hypoxic ventilatory response and greater resting hypoxaemia, they had similar hypoxic pulmonary vasoconstriction when compared to lowlanders at rest. Iron-infusion attenuated PASP in both groups at rest (P = 0.005), while chelation did not exaggerate PASP in either group at rest or during exaggerated hypoxaemia ( PIO2  = 67 mmHg). During exercise at 25% peak wattage, PASP was only consistently elevated in Sherpa, which persisted following both iron infusion or chelation. These findings provide new evidence on the complex interplay of iron regulation on pulmonary vascular regulation during acclimatization and adaptation to high altitude.


Asunto(s)
Altitud , Vasoconstricción , Aclimatación , Humanos , Hipoxia , Hierro
7.
Am J Physiol Heart Circ Physiol ; 321(4): H738-H747, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34448634

RESUMEN

Hemoconcentration can influence hypoxic pulmonary vasoconstriction (HPV) via increased frictional force and vasoactive signaling from erythrocytes, but whether the balance of these mechanism is modified by the duration of hypoxia remains to be determined. We performed three sequential studies: 1) at sea level, in normoxia and isocapnic hypoxia with and without isovolumic hemodilution (n = 10, aged 29 ± 7 yr); 2) at altitude (6 ± 2 days acclimatization at 5,050 m), before and during hypervolumic hemodilution (n = 11, aged 27 ± 5 yr) with room air and additional hypoxia [fraction of inspired oxygen ([Formula: see text])= 0.15]; and 3) at altitude (4,340 m) in Andean high-altitude natives with excessive erythrocytosis (EE; n = 6, aged 39 ± 17 yr), before and during isovolumic hemodilution with room air and hyperoxia (end-tidal Po2 = 100 mmHg). At sea level, hemodilution mildly increased pulmonary artery systolic pressure (PASP; +1.6 ± 1.5 mmHg, P = 0.01) and pulmonary vascular resistance (PVR; +0.7 ± 0.8 wu, P = 0.04). In contrast, after acclimation to 5,050 m, hemodilution did not significantly alter PASP (22.7 ± 5.2 vs. 24.5 ± 5.2 mmHg, P = 0.14) or PVR (2.2 ± 0.9 vs. 2.3 ± 1.2 wu, P = 0.77), although both remained sensitive to additional acute hypoxia. In Andeans with EE at 4,340 m, hemodilution lowered PVR in room air (2.9 ± 0.9 vs. 2.3 ± 0.8 wu, P = 0.03), but PASP remained unchanged (31.3 ± 6.7 vs. 30.9 ± 6.9 mmHg, P = 0.80) due to an increase in cardiac output. Collectively, our series of studies reveal that HPV is modified by the duration of exposure and the prevailing hematocrit level. In application, these findings emphasize the importance of accounting for hematocrit and duration of exposure when interpreting the pulmonary vascular responses to hypoxemia.NEW & NOTEWORTHY Red blood cell concentration influences the pulmonary vasculature via direct frictional force and vasoactive signaling, but whether the magnitude of the response is modified with duration of exposure is not known. By assessing the pulmonary vascular response to hemodilution in acute normobaric and prolonged hypobaric hypoxia in lowlanders and lifelong hypobaric hypoxemia in Andean natives, we demonstrated that a reduction in red cell concentration augments the vasoconstrictive effects of hypoxia in lowlanders. In high-altitude natives, hemodilution lowered pulmonary vascular resistance, but a compensatory increase in cardiac output following hemodilution rendered PASP unchanged.


Asunto(s)
Aclimatación , Altitud , Presión Arterial , Eritrocitos/metabolismo , Hemodilución , Hipoxia/sangre , Policitemia/sangre , Arteria Pulmonar/fisiopatología , Vasoconstricción , Adulto , Viscosidad Sanguínea , Gasto Cardíaco , Frecuencia Cardíaca , Hematócrito , Humanos , Hipoxia/diagnóstico , Hipoxia/fisiopatología , Masculino , Persona de Mediana Edad , Policitemia/diagnóstico , Policitemia/fisiopatología , Factores de Tiempo , Resistencia Vascular , Adulto Joven
8.
J Zoo Wildl Med ; 52(3): 986-996, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34687514

RESUMEN

Dependent on timing of assessment, anesthetic agents and specifically medetomidine negatively affect cardiac function in great apes. The aim of this study was to determine the influence of tiletamine-zolazepam (TZ) with and without medetomidine on cardiac structure and function in healthy chimpanzees (Pan troglodytes) during a period of relative blood pressure stability. Twenty-four chimpanzees living in an African wildlife sanctuary undergoing routine health assessments were stratified by age, sex, and body mass and randomized to be anesthetized using either TZ (6 mg/kg; n = 13; seven males and six females) or a combination of TZ (2 mg/kg) and medetomidine (TZM; 0.02 mg/kg; n = 11; five males and six females). During health checks, regular heart rate and blood pressure readings were taken and a standardized echocardiogram was performed 20-30 min after induction. Data were compared between the two anesthetic groups using independent-samples t or Mann-Whitney U tests. Although heart rate (mean ± SD; TZ: 76 ± 10 bpm; TZM: 65 ± 14 bpm, P = 0.027), cardiac output (TZ: 3.0 ± 0.7 L/min; TZM: 2.4 ± 0.7 L/min, P = 0.032), and mitral A-wave velocities (TZ: 0.51 ± 0.16 cm/s; TZM: 0.36 ± 0.10 cm/s, P = 0.013) were lower in the TZM group, there were no statistically significant differences in cardiac structure or the remaining functional variables between groups. Furthermore, there were no statistical differences in systolic (TZ 114.6 ± 14.9 mmHg; TZM: 123.0 ± 28.1 mmHg; P = 0.289) or diastolic blood pressure (TZ: 81.8 ± 22.3 mmHg, TZM: 83.8 ± 20.1 mmHg; P = 0.827) between the groups during the echocardiogram. This study has shown that during a period of relative blood pressure stability, during the first 20-30 min after induction there are few differences in measures of cardiac structure and function between protocols using TZ with or without medetomidine in healthy chimpanzees.


Asunto(s)
Anestesia , Anestésicos , Anestesia/veterinaria , Anestésicos/farmacología , Animales , Femenino , Frecuencia Cardíaca , Masculino , Medetomidina/farmacología , Pan troglodytes
9.
J Physiol ; 598(5): 955-965, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31977069

RESUMEN

KEY POINTS: In an anaesthetised animal model, independent stimulation of baroreceptors in the pulmonary artery elicits reflex sympathoexcitation. In humans, pulmonary arterial pressure is positively related to basal muscle sympathetic nerve activity (MSNA) under conditions where elevated pulmonary pressure is evident (e.g. high altitude); however, a causal link is not established. Using a novel experimental approach, we demonstrate that reducing pulmonary arterial pressure lowers basal MSNA in healthy humans. This response is distinct from the negative feedback reflex mediated by aortic and carotid sinus baroreceptors when systemic arterial pressure is lowered. Afferent input from pulmonary arterial baroreceptors may contribute to sympathetic neural activation in healthy lowland natives exposed to high altitude. ABSTRACT: In animal models, distension of baroreceptors located in the pulmonary artery induces a reflex increase in sympathetic outflow; however, this has not been examined in humans. Therefore, we investigated whether reductions in pulmonary arterial pressure influenced sympathetic outflow and baroreflex control of muscle sympathetic nerve activity (MSNA). Healthy lowlanders (n = 13; 5 females) were studied 4-8 days following arrival at high altitude (4383 m; Cerro de Pasco, Peru), a setting that increases both pulmonary arterial pressure and sympathetic outflow. MSNA (microneurography) and blood pressure (BP; photoplethysmography) were measured continuously during ambient air breathing (Amb) and a 6 min inhalation of the vasodilator nitric oxide (iNO; 40 ppm in 21% O2 ), to selectively lower pulmonary arterial pressure. A modified Oxford test was performed under both conditions. Pulmonary artery systolic pressure (PASP) was determined using Doppler echocardiography. iNO reduced PASP (24 ± 3 vs. 32 ± 5 mmHg; P < 0.001) compared to Amb, with a similar reduction in MSNA total activity (1369 ± 576 to 994 ± 474 a.u min-1 ; P = 0.01). iNO also reduced the MSNA operating point (burst incidence; 39 ± 16 to 33 ± 17 bursts·100 Hb-1 ; P = 0.01) and diastolic operating pressure (82 ± 8 to 80 ± 8 mmHg; P < 0.001) compared to Amb, without changing heart rate (P = 0.6) or vascular-sympathetic baroreflex gain (P = 0.85). In conclusion, unloading of pulmonary arterial baroreceptors reduced basal sympathetic outflow to the skeletal muscle vasculature and reset vascular-sympathetic baroreflex control of MSNA downward and leftward in healthy humans at high altitude. These data suggest the existence of a lesser-known reflex input involved in sympathetic activation in humans.


Asunto(s)
Hipertensión Pulmonar , Presorreceptores , Barorreflejo , Presión Sanguínea , Femenino , Frecuencia Cardíaca , Humanos , Músculo Esquelético , Arteria Pulmonar , Sistema Nervioso Simpático
10.
Am J Physiol Heart Circ Physiol ; 319(3): H632-H641, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32772543

RESUMEN

Left ventricular (LV) structural remodeling following athletic training has been evidenced through training-specific changes in wall thickness and geometry. Whether the LV response to changes in hemodynamic load also adapts in a training-specific manner is unknown. Using echocardiography, we examined LV responses of endurance-trained (n = 15), resistance-trained (n = 14), and nonathletic men (n = 13) to 1) 20, 40, and 60% one repetition-maximum (1RM), leg-press exercise and 2) intravascular Gelofusine infusion (7 mL/kg) with passive leg raise. While resting heart rate was lower in endurance-trained participants versus controls (P = 0.001), blood pressure was similar between groups. Endurance-trained individuals had lower wall thickness but greater LV mass relative to body surface area versus controls, with no difference between resistance-trained individuals and controls. Leg press evoked a similar increase in blood pressure; however, resistance-trained participants preserved stroke volume (SV; -3 ± 8%) versus controls at 60% 1RM (-15 ± 7%, P = 0.001). While the maintenance of SV was related to the change in longitudinal strain across all groups (R = 0.537; P = 0.007), time-to-peak strain was maintained in resistance-trained but delayed in endurance-trained individuals (1 vs. 12% delay; P = 0.021). Volume infusion caused a similar increase in end-diastolic volume (EDV) and SV across groups, but leg raise further increased EDV only in endurance-trained individuals (5 ± 5 to 8 ± 5%; P = 0.018). Correlation analysis revealed a relationship between SV and longitudinal strain following infusion and leg raise (R = 0.334, P = 0.054); however, we observed no between-group differences in longitudinal myocardial mechanics. In conclusion, resistance-trained individuals better maintained SV during pressure loading, whereas endurance-trained individuals demonstrated greater EDV reserve during volume loading. These data provide novel evidence of training-specific LV functional remodeling.NEW & NOTEWORTHY Training-specific functional remodeling of the LV in response to different loading conditions has been recently suggested, but not experimentally tested in the same group of individuals. Our data provide novel evidence of a dichotomous, training-specific LV adaptive response to hemodynamic pressure or volume loading.


Asunto(s)
Cardiomegalia Inducida por el Ejercicio , Corazón/fisiología , Resistencia Física , Entrenamiento de Fuerza , Función Ventricular Izquierda , Remodelación Ventricular , Adaptación Fisiológica , Adulto , Volumen Sanguíneo , Corazón/diagnóstico por imagen , Hemodinámica , Humanos , Infusiones Intravenosas , Contracción Isométrica , Masculino , Sustitutos del Plasma/administración & dosificación , Poligelina/administración & dosificación , Adulto Joven
11.
J Zoo Wildl Med ; 51(3): 687-690, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33480546

RESUMEN

Measurements of intraocular pressure (IOP) and tear production are key components of ophthalmic examination. Chimpanzees (Pan troglodytes) were anesthetized using either tiletamine-zolazepam (TZ; 2 mg/kg) combined with medetomidine (TZM; 0.02 mg/kg), or, TZ alone (6mg/kg). Tear production was lower (P = 0.03) with TZM (5.63 ± 6.22 mm/min; n = 16) than with TZ (11.13 ± 4.63 mm/min; n = 8). Mean IOP, measured using rebound tonometry in an upright body position (n = 8) was 18.74 ± 3.01 mm Hg, with no differences between right and left eyes. However, positioning chimpanzees in left lateral recumbency (n = 27) resulted in higher IOP in the dependent (left) eye (24.77 ± 4.49 mm Hg) compared to the nondependent (right) eye (22.27 ± 4.65 mm Hg) of the same animal (P < 0.0001). These data indicate medetomidine anesthesia markedly lowers tear production in chimpanzees, and that body position should be taken into consideration when performing rebound tonometry.


Asunto(s)
Anestésicos Combinados/administración & dosificación , Anestésicos/administración & dosificación , Presión Intraocular/fisiología , Medetomidina/administración & dosificación , Pan troglodytes/fisiología , Lágrimas/fisiología , Tiletamina/administración & dosificación , Zolazepam/administración & dosificación , Anestesia/veterinaria , Animales , Combinación de Medicamentos , Presión Intraocular/efectos de los fármacos , Distribución Aleatoria , Lágrimas/efectos de los fármacos
12.
Exp Physiol ; 104(12): 1963-1972, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31410899

RESUMEN

NEW FINDINGS: What is the central question of this study? The aim was to evaluate the degree to which increases in haematocrit alter cerebral blood flow and cerebral oxygen delivery during acclimatization to high altitude. What is the main finding and its importance? Through haemodilution, we determined that, after 1 week of acclimatization, the primary mechanism contributing to the cerebral blood flow response during acclimatization is an increase in haemoglobin and haematocrit. The remaining contribution to the cerebral blood flow response during acclimatization is likely to be attributable to ventilatory acclimatization. ABSTRACT: At high altitude, an increase in haematocrit (Hct) is achieved through altitude-induced diuresis and erythropoiesis, both of which result in increased arterial oxygen content. Given the impact of alterations in Hct on oxygen content, haemoconcentration has been hypothesized to mediate, in part, the attenuation of the initial elevation in cerebral blood flow (CBF) at high altitude. To test this hypothesis, healthy men (n = 13) ascended to 5050 m over 9 days without the aid of prophylactic acclimatization medications. After 1 week of acclimatization at 5050 m, participants were haemodiluted by rapid saline infusion (2.10 ± 0.28 l) to return Hct towards pre-acclimatization values. Arterial blood gases, Hct, global CBF (duplex ultrasound) and haemodynamic variables were measured after initial arrival at 5050 m and after 1 week of acclimatization at high altitude, before and after the haemodilution protocol. After 1 week at 5050 m, the Hct increased from 42.5 ± 2.5 to 49.6 ± 2.5% (P < 0.001), and it was subsequently reduced to 45.6 ± 2.3% (P < 0.001) after haemodilution. Global CBF decreased from 844 ± 160 to 619 ± 136 ml min-1 (P = 0.033) after 1 week of acclimatization and increased to 714 ± 204 ml min -1 (P = 0.045) after haemodilution. Despite the significant changes in Hct, and thus oxygen content, cerebral oxygen delivery was unchanged at all time points. Furthermore, these observations occurred in the absence of any changes in mean arterial blood pressure, cardiac output, arterial blood pH or oxygen saturation pre- and posthaemodilution. These data highlight the influence of Hct in the regulation of CBF and are the first to demonstrate experimentally that haemoconcentration contributes to the reduction in CBF during acclimatization to altitude.


Asunto(s)
Aclimatación/fisiología , Altitud , Circulación Cerebrovascular/fisiología , Expediciones , Hematócrito/métodos , Adulto , Volumen Sanguíneo/fisiología , Humanos , Masculino , Nepal
14.
Vet Radiol Ultrasound ; 59(1): 89-97, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28879657

RESUMEN

There is growing evidence that dilated cardiomyopathy may be a major cause of death in captive Livingstone's fruit bats (Pteropus livingstonii). Therefore, the primary aim of this prospective, exploratory study was to examine whether a systematic cardiac ultrasound protocol is feasible in this critically endangered species and to report basic measures of cardiac structure and function from a cohort of apparently healthy bats. A secondary aim was to test the effect posture (dorsal recumbency vs. roosting) has upon cardiac function in this species. Transthoracic echocardiograms, including 2D, Doppler, and tissue Doppler measures of cardiac structure and function were completed as part of routine health examinations for bats at a single center (n = 19). Bats were then grouped by age and disease status and the mean and range data reported for each group. In healthy adult bats, with the exception of a reduction in heart rate (P ≤ 0.05), right atrial systolic area (P ≤ 0.05), and right ventricular velocity during atrial contraction, there were no significant changes in cardiac structure or function in response to the roosting position. However, in the bats presenting with dilated cardiomyopathy the current data suggest that left ventricular ejection fraction is improved while roosting. Further work is required to confirm our initial findings, generate diagnostic reference intervals, and explore the causes of dilated cardiomyopathy in this species.


Asunto(s)
Cardiomiopatía Dilatada/diagnóstico por imagen , Quirópteros , Ecocardiografía/veterinaria , Pruebas de Función Cardíaca/veterinaria , Corazón/diagnóstico por imagen , Postura , Ultrasonografía/veterinaria , Animales , Quirópteros/fisiología , Femenino , Masculino , Estudios Prospectivos
15.
J Zoo Wildl Med ; 48(4): 1081-1085, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29297803

RESUMEN

Fourteen captive Livingstone's fruit bats ( Pteropus livingstonii) were anesthetized for routine veterinary health checks, including echocardiography, using sevoflurane. In addition, three specimens suffering from cardiac disease and a pregnant specimen were anesthetized for clinical assessment. No anesthetic complications were observed in any of the specimens. Significant differences in the core body temperature were found between the esophageal and rectal measurements. A significant decrease in blood glucose was noted through the anesthesia, suspected to be related to an extended fasting period prior to the procedure.


Asunto(s)
Anestesia por Inhalación/veterinaria , Anestésicos por Inhalación/farmacología , Quirópteros , Sevoflurano/farmacología , Animales , Femenino , Masculino
16.
J Zoo Wildl Med ; 48(3): 636-644, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28920777

RESUMEN

Limited data are available on hemodynamic responses to anesthetic protocols in wild-born chimpanzees (Pan troglodytes). Accordingly, this study characterized the heart rate (HR) and blood pressure responses to four anesthetic protocols in 176 clinically healthy, wild-born chimpanzees undergoing routine health assessments. Animals were anesthetized with medetomidine-ketamine (MK) (n = 101), tiletamine-zolazepam (TZ) (n = 30), tiletamine-zolazepam-medetomidine (TZM) (n = 24), or medetomidine-ketamine (maintained with isoflurane) (MKI) (n = 21). During each procedure, HR, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were regularly recorded. Data were grouped according to anesthetic protocol, and mean HR, SBP, and DBP were calculated. Differences between mean HR, SBP, and DBP for each anesthetic protocol were assessed using the Kruskall-Wallis test and a Dunn multiple comparisons post hoc analysis. To assess the hemodynamic time course response to each anesthetic protocol, group mean data (±95% confidence interval [CI]) were plotted against time postanesthetic induction. Mean HR (beats/min [CI]) was significantly higher in TZ (86 [80-92]) compared to MKI (69 [61-78]) and MK (62 [60-64]) and in TZM (73 [68-78]) compared to MK. The average SBP and DBP values (mm Hg [CI]) were significantly higher in MK (130 [126-134] and 94 [91-97]) compared to TZ (104 [96-112] and 58 [53-93]) and MKI (113 [103-123] and 78 [69-87]) and in TZM (128 [120-135] and 88 [83-93]) compared to TZ. Time course data were markedly different between protocols, with MKI showing the greatest decline over time. Both the anesthetic protocol adopted and the timing of measurement after injection influence hemodynamic recordings in wild-born chimpanzees and need to be considered when monitoring or assessing cardiovascular health.


Asunto(s)
Anestésicos Combinados/farmacología , Anestésicos/farmacología , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Pan troglodytes , Anestesia , Anestésicos/administración & dosificación , Anestésicos Combinados/administración & dosificación , Animales , Animales de Zoológico , Combinación de Medicamentos , Femenino , Hipnóticos y Sedantes/administración & dosificación , Isoflurano/administración & dosificación , Isoflurano/farmacología , Ketamina/administración & dosificación , Ketamina/farmacología , Masculino , Medetomidina/administración & dosificación , Medetomidina/farmacología , Tiletamina/administración & dosificación , Tiletamina/farmacología , Zolazepam/administración & dosificación , Zolazepam/farmacología
17.
J Zoo Wildl Med ; 48(4): 1077-1080, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29297825

RESUMEN

Eleven cases of dilated cardiomyopathy have been diagnosed and treated in captive Livingstone fruit bats ( Pteropus livingstonii) in the United Kingdom over the past 7 yr. All but one case received treatment with a diuretic plus an angiotensin-converting enzyme inhibitor (ACEI), and, or pimobendan. One case is still under treatment with pimobendan alone, following diagnosis before onset of clinical signs. Diuretic treatment consisted of furosemide at a dose rate of 0.5-5 mg/kg, one to three times daily, and, or spironolactone at a dose rate of 1-4 mg/kg, once or twice daily. When used, the ACEI imidapril was given at a dose rate of 0.24-0.38 mg/kg q 24 hr, and pimobendan at a dose rate of 0.2-0.5 mg/kg bid. This report is intended to provide anyone seeking to medically manage heart failure in Pteropus species, particularly P. livingstonii, with a review of drugs and doses that have been used.


Asunto(s)
Cardiomiopatía Dilatada/veterinaria , Quirópteros , Inhibidores de la Enzima Convertidora de Angiotensina/administración & dosificación , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Animales de Zoológico , Cardiomiopatía Dilatada/tratamiento farmacológico , Cardiotónicos/uso terapéutico , Diuréticos/administración & dosificación , Diuréticos/uso terapéutico , Femenino , Furosemida/administración & dosificación , Furosemida/uso terapéutico , Imidazolidinas/administración & dosificación , Imidazolidinas/uso terapéutico , Masculino , Piridazinas/administración & dosificación , Piridazinas/uso terapéutico , Espironolactona/administración & dosificación , Espironolactona/uso terapéutico
18.
Exp Physiol ; 101(4): 509-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26800643

RESUMEN

NEW FINDINGS: What is the central question of this study? Left ventricular (LV) twist is reduced when afterload is increased, but the meaning of this specific heart muscle response and its impact on cardiac output are not well understood. What is the main finding and its importance? This study shows that LV twist responds even when arterial haemodynamics are altered only locally, and without apparent change in metabolic (i.e. heat-induced) demand. The concurrent decline in cardiac output and LV twist during partial arterial occlusion despite the increased peripheral demand caused by heat stress suggests that LV twist may be involved in the protective sensing of heart muscle stress that can override the provision of the required cardiac output. Whether left ventricular (LV) twist and untwisting rate (LV twist mechanics) respond to localised, peripheral, non-metabolic changes in arterial haemodynamics within an individual's normal afterload range is presently unknown. Furthermore, previous studies indicate that LV twist mechanics may override the provision of cardiac output, but this hypothesis has not been examined purposefully. Therefore, we acutely altered local peripheral arterial haemodynamics in 11 healthy humans (women/men n = 3/8; age 26 ± 5 years) by bilateral arm heating (BAH). Ultrasonography was used to examine arterial haemodynamics, LV twist mechanics and the twist-to-shortening ratio (TSR). To determine the arterial function-dependent contribution of LV twist mechanics to cardiac output, partial blood flow restriction to the arms was applied during BAH (BAHBFR ). Bilateral arm heating increased arm skin temperatures [change (Δ) +6.4 ± 0.9°C, P < 0.0001] but not core temperature (Δ -0.0 ± 0.1°C, P > 0.05), concomitant to increases in brachial artery blood flow (Δ 212 ± 77 ml, P < 0.0001), cardiac output (Δ 495 ± 487 l min(-1) , P < 0.05), LV twist (Δ 3.0 ± 3.5 deg, P < 0.05) and TSR (Δ 3.3 ± 1.3, P < 0.05) but maintained carotid artery blood flow (Δ 18 ± 147 ml, P > 0.05). Subsequently, BAHBFR reduced all parameters to preheating levels, except for TSR and heart rate, which remained at BAH levels. In conclusion, LV twist mechanics responded to local peripheral arterial haemodynamics within the normal afterload range, in part independent of TSR and heart rate. The findings suggest that LV twist mechanics may be more closely associated with intrinsic sensing of excessive pressure stress rather than being associated with the delivery of adequate cardiac output.


Asunto(s)
Arterias/fisiología , Ventrículos Cardíacos/fisiopatología , Hemodinámica/fisiología , Hiperemia/fisiopatología , Flujo Sanguíneo Regional/fisiología , Adulto , Gasto Cardíaco/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Función Ventricular Izquierda/fisiología
19.
Commun Biol ; 7(1): 682, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877299

RESUMEN

Although the gross morphology of the heart is conserved across mammals, subtle interspecific variations exist in the cardiac phenotype, which may reflect evolutionary divergence among closely-related species. Here, we compare the left ventricle (LV) across all extant members of the Hominidae taxon, using 2D echocardiography, to gain insight into the evolution of the human heart. We present compelling evidence that the human LV has diverged away from a more trabeculated phenotype present in all other great apes, towards a ventricular wall with proportionally greater compact myocardium, which was corroborated by post-mortem chimpanzee (Pan troglodytes) hearts. Speckle-tracking echocardiographic analyses identified a negative curvilinear relationship between the degree of trabeculation and LV systolic twist, revealing lower rotational mechanics in the trabeculated non-human great ape LV. This divergent evolution of the human heart may have facilitated the augmentation of cardiac output to support the metabolic and thermoregulatory demands of the human ecological niche.


Asunto(s)
Ventrículos Cardíacos , Hominidae , Fenotipo , Animales , Humanos , Ventrículos Cardíacos/anatomía & histología , Ventrículos Cardíacos/diagnóstico por imagen , Hominidae/anatomía & histología , Ecocardiografía , Evolución Biológica , Pan troglodytes/anatomía & histología , Masculino , Femenino
20.
Eur J Prev Cardiol ; 30(9): 745-755, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-36753063

RESUMEN

BACKGROUND: There is a lack of international consensus regarding the prescription of high-intensity interval training (HIIT) for people with coronary artery disease (CAD) attending cardiac rehabilitation (CR). AIMS: To assess the clinical effectiveness and safety of low-volume HIIT compared with moderate-intensity steady-state (MISS) exercise training for people with CAD. METHODS AND RESULTS: We conducted a multi-centre RCT, recruiting 382 patients from 6 outpatient CR centres. Participants were randomized to twice-weekly HIIT (n = 187) or MISS (n = 195) for 8 weeks. HIIT consisted of 10 × 1 min intervals of vigorous exercise (>85% maximum capacity) interspersed with 1 min periods of recovery. MISS was 20-40 min of moderate-intensity continuous exercise (60-80% maximum capacity). The primary outcome was the change in cardiorespiratory fitness [peak oxygen uptake (VO2 peak)] at 8 week follow-up. Secondary outcomes included cardiovascular disease risk markers, cardiac structure and function, adverse events, and health-related quality of life. At 8 weeks, VO2peak improved more with HIIT (2.37 mL.kg-1.min-1; SD, 3.11) compared with MISS (1.32 mL.kg-1.min-1; SD, 2.66). After adjusting for age, sex, and study site, the difference between arms was 1.04 mL.kg-1.min-1 (95% CI, 0.38 to 1.69; P = 0.002). Only one serious adverse event was possibly related to HIIT. CONCLUSIONS: In stable CAD, low-volume HIIT improved cardiorespiratory fitness more than MISS by a clinically meaningful margin. Low-volume HIIT is a safe, well-tolerated, and clinically effective intervention that produces short-term improvement in cardiorespiratory fitness. It should be considered by all CR programmes as an adjunct or alternative to MISS. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02784873. https://clinicaltrials.gov/ct2/show/NCT02784873.


Cardiac rehabilitation exercise training can improve cardiorespiratory fitness and quality of life for people with coronary artery disease, but sometimes, it is not effective. The intensity of the exercise training may be important. We conducted a randomized controlled trial to test if moderate-intensity exercise or high-intensity exercise was better.High-intensity interval training was more effective than moderate-intensity exercise training for improving cardiorespiratory fitness in people with coronary artery disease attending cardiac rehabilitation.High-intensity interval training was safe and well tolerated.


Asunto(s)
Rehabilitación Cardiaca , Capacidad Cardiovascular , Enfermedad de la Arteria Coronaria , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Rehabilitación Cardiaca/métodos , Calidad de Vida , Entrenamiento de Intervalos de Alta Intensidad/métodos , Enfermedad de la Arteria Coronaria/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA