Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cereb Cortex ; 33(10): 6291-6298, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36562997

RESUMEN

Broadly congruent mirror neurons, responding to any grasp movement, and strictly congruent mirror neurons, responding only to specific grasp movements, have been reported in single-cell studies with primates. Delineating grasp properties in humans is essential to understand the human mirror neuron system with implications for behavior and social cognition. We analyzed electrocorticography data from a natural reach-and-grasp movement observation and delayed imitation task with 3 different natural grasp types of everyday objects. We focused on the classification of grasp types from high-frequency broadband mirror activation patterns found in classic mirror system areas, including sensorimotor, supplementary motor, inferior frontal, and parietal cortices. Classification of grasp types was successful during movement observation and execution intervals but not during movement retention. Our grasp type classification from combined and single mirror electrodes provides evidence for grasp-congruent activity in the human mirror neuron system potentially arising from strictly congruent mirror neurons.


Asunto(s)
Neuronas Espejo , Animales , Humanos , Neuronas Espejo/fisiología , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Electrocorticografía , Fuerza de la Mano/fisiología
2.
Neuroimage ; 273: 120079, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023989

RESUMEN

Neuroscientific studies often involve some form of group analysis over multiple participants. This requires alignment of recordings across participants. A naive solution is to assume that participants' recordings can be aligned anatomically in sensor space. However, this assumption is likely violated due to anatomical and functional differences between individual brains. In magnetoencephalography (MEG) recordings the problem of inter-subject alignment is exacerbated by the susceptibility of MEG to individual cortical folding patterns as well as the inter-subject variability of sensor locations over the brain due to the use of a fixed helmet. Hence, an approach to combine MEG data over individual brains should relax the assumptions that a) brain anatomy and function are tightly linked and b) that the same sensors capture functionally comparable brain activation across individuals. Here we use multiset canonical correlation analysis (M-CCA) to find a common representation of MEG activations recorded from 15 participants performing a grasping task. The M-CCA algorithm was applied to transform the data of a set of multiple participants into a common space with maximum correlation between participants. Importantly, we derive a method to transform data from a new, previously unseen participant into this common representation. This makes it useful for applications that require transfer of models derived from a group of individuals to new individuals. We demonstrate the usefulness and superiority of the approach with respect to previously used approaches. Finally, we show that our approach requires only a small number of labeled data from the new participant. The proposed method demonstrates that functionally motivated common spaces have potential applications in reducing training time of online brain-computer interfaces, where models can be pre-trained on previous participants/sessions. Moreover, inter-subject alignment via M-CCA has the potential for combining data of different participants and could become helpful in future endeavors on large open datasets.


Asunto(s)
Interfaces Cerebro-Computador , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Análisis de Correlación Canónica , Encéfalo/fisiología , Mapeo Encefálico/métodos
3.
Hum Brain Mapp ; 40(1): 151-162, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30251771

RESUMEN

Reach movements are characterized by multiple kinematic variables that can change with age or due to medical conditions such as movement disorders. While the neural control of reach direction is well investigated, the elements of the neural network regulating speed (the nondirectional component of velocity) remain uncertain. Here, we used a custom made magnetic resonance (MR)-compatible arm movement tracking system to capture the real kinematics of the arm movements while measuring brain activation with functional magnetic resonance imaging to reveal areas in the human brain in which BOLD-activation covaries with the speed of arm movements. We found significant activation in multiple cortical and subcortical brain regions positively correlated with endpoint (wrist) speed (speed-related activation), including contralateral premotor cortex (PMC), supplementary motor area (SMA), thalamus (putative VL/VA nuclei), and bilateral putamen. The hand and arm regions of primary sensorimotor cortex (SMC) and a posterior region of thalamus were significantly activated by reach movements but showed a more binary response characteristics (movement present or absent) than with continuously varying speed. Moreover, a subregion of contralateral SMA also showed binary movement activation but no speed-related BOLD-activation. Effect size analysis revealed bilateral putamen as the most speed-specific region among the speed-related clusters whereas primary SMC showed the strongest specificity for movement versus non-movement discrimination, independent of speed variations. The results reveal a network of multiple cortical and subcortical brain regions that are involved in speed regulation among which putamen, anterior thalamus, and PMC show highest specificity to speed, suggesting a basal-ganglia-thalamo-cortical loop for speed regulation.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Movimiento/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Putamen/fisiología , Tálamo/fisiología , Adulto , Fenómenos Biomecánicos , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Actividad Motora/fisiología , Red Nerviosa/diagnóstico por imagen , Putamen/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Adulto Joven
4.
Front Hum Neurosci ; 16: 859519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355586

RESUMEN

Based on increased user experience during stimulation, frequency-modulated steady-state visual evoked potentials (FM-SSVEPs) have been suggested as an improved stimulation method for brain-computer interfaces. Adapting such a novel stimulation paradigm requires in-depth analyses of all different stimulation parameters and their influence on brain responses as well as the user experience during the stimulation. In the current manuscript, we assess the influence of different values for the modulation index, which determine the spectral distribution in the stimulation signal on FM-SSVEPs. We visually stimulated 14 participants at different target frequencies with four different values for the modulation index. Our results reveal that changing the modulation index in a way that elevates the stimulation power in the targeted sideband leads to increased FM-SSVEP responses. There is, however, a tradeoff with user experience as increased modulation indices also lead to increased perceived flicker intensity as well as decreased stimulation comfort in our participants. Our results can guide the choice of parameters in future FM-SSVEP implementations.

5.
PLoS One ; 16(12): e0260304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855777

RESUMEN

While the existence of a human mirror neuron system is evident, the involved brain areas and their exact functional roles remain under scientific debate. A number of functionally different mirror neuron types, neurons that selectively respond to specific grasp phases and types for example, have been reported with single cell recordings in monkeys. In humans, spatially limited, intracranially recorded electrophysiological signals in the high-gamma (HG) range have been used to investigate the human mirror system, as they are associated with spiking activity in single neurons. Our goal here is to complement previous intracranial HG studies by using magnetoencephalography to record HG activity simultaneously from the whole head. Participants performed a natural reach-to-grasp movement observation and delayed imitation task with different everyday objects and grasp types. This allowed us to characterize the spatial organization of cortical areas that show HG-activation modulation during movement observation (mirroring), retention (mnemonic mirroring), and execution (motor control). Our results show mirroring related HG modulation patterns over bilateral occipito-parietal as well as sensorimotor areas. In addition, we found mnemonic mirroring related HG modulation over contra-lateral fronto-temporal areas. These results provide a foundation for further human mirror system research as well as possible target areas for brain-computer interface and neurorehabilitation approaches.


Asunto(s)
Fuerza de la Mano , Magnetoencefalografía , Adulto , Encéfalo , Humanos , Masculino , Adulto Joven
6.
Front Neurogenom ; 2: 646225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38235231

RESUMEN

Objective and Background: Decades of research in the field of steady-state visual evoked potentials (SSVEPs) have revealed great potential of rhythmic light stimulation for brain-computer interfaces. Additionally, rhythmic light stimulation provides a non-invasive method for entrainment of oscillatory activity in the brain. Especially effective protocols enabling non-perceptible rhythmic stimulation and, thereby, reducing eye fatigue and user discomfort are favorable. Here, we investigate effects of (1) perceptible and (2) non-perceptible rhythmic light stimulation as well as attention-based effects of the stimulation by asking participants to focus (a) on the stimulation source directly in an overt attention condition or (b) on a cross-hair below the stimulation source in a covert attention condition. Method: SSVEPs at 10 Hz were evoked with a light-emitting diode (LED) driven by frequency-modulated signals and amplitudes of the current intensity either below or above a previously estimated individual threshold. Furthermore, we explored the effect of attention by asking participants to fixate on the LED directly in the overt attention condition and indirectly attend it in the covert attention condition. By measuring electroencephalography, we analyzed differences between conditions regarding the detection of reliable SSVEPs via the signal-to-noise ratio (SNR) and functional connectivity in occipito-frontal(-central) regions. Results: We could observe SSVEPs at 10 Hz for the perceptible and non-perceptible rhythmic light stimulation not only in the overt but also in the covert attention condition. The SNR and SSVEP amplitudes did not differ between the conditions and SNR values were in all except one participant above significance thresholds suggested by previous literature indicating reliable SSVEP responses. No difference between the conditions could be observed in the functional connectivity in occipito-frontal(-central) regions. Conclusion: The finding of robust SSVEPs even for non-intrusive rhythmic stimulation protocols below an individual perceptibility threshold and without direct fixation on the stimulation source reveals strong potential as a safe stimulation method for oscillatory entrainment in naturalistic applications.

7.
Front Hum Neurosci ; 11: 391, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798676

RESUMEN

Steady-state visual evoked potentials (SSVEPs) have been widely employed for the control of brain-computer interfaces (BCIs) because they are very robust, lead to high performance, and allow for a high number of commands. However, such flickering stimuli often also cause user discomfort and fatigue, especially when several light sources are used simultaneously. Different variations of SSVEP driving signals have been proposed to increase user comfort. Here, we investigate the suitability of frequency modulation of a high frequency carrier for SSVEP-BCIs. We compared BCI performance and user experience between frequency modulated (FM) and traditional sinusoidal (SIN) SSVEPs in an offline classification paradigm with four independently flickering light-emitting diodes which were overtly attended (fixated). While classification performance was slightly reduced with the FM stimuli, the user comfort was significantly increased. Comparing the SSVEPs for covert attention to the stimuli (without fixation) was not possible, as no reliable SSVEPs were evoked. Our results reveal that several, simultaneously flickering, light emitting diodes can be used to generate FM-SSVEPs with different frequencies and the resulting occipital electroencephalography (EEG) signals can be classified with high accuracy. While the performance we report could be further improved with adjusted stimuli and algorithms, we argue that the increased comfort is an important result and suggest the use of FM stimuli for future SSVEP-BCI applications.

8.
J Neurosci Methods ; 241: 1-9, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25522824

RESUMEN

BACKGROUND: Steady-state visual evoked potentials (SSVEPs) are widely used for brain-computer interfaces. However, users experience fatigue due to exposure to flickering stimuli. High-frequency stimulation has been proposed to reduce this problem. We adapt frequency-modulated (FM) stimulation from the auditory domain, where it is commonly used to evoke steady-state responses, and compare the EEG as well as behavioral flicker perceptibility ratings. NEW METHOD: We evoke SSVEPs with a green light-emitting diode (LED) driven by FM signals. RESULTS: FM-SSVEPs with different carrier and modulation frequencies can reliably be evoked with spectral peaks at the lower FM sideband. Subjective perceptibility ratings decrease with increasing FM carrier frequencies, while the peak amplitude and signal-to-noise ratio (SNR) remain the same. COMPARISON WITH EXISTING METHOD: There are neither amplitude nor SNR differences between SSVEPs evoked rectangularly, sinusoidally or via FM. Perceptibility ratings were lower for FM-SSVEPs with carrier frequencies of 20Hz and above than for sinusoidally evoked SSVEPs. CONCLUSIONS: FM-SSVEPs seem to be beneficial for BCI usage. Reduced flicker perceptibility in FM-SSVEPs suggests reduced fatigue, which leads to an enhanced user experience and performance.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos , Potenciales Evocados Visuales/fisiología , Estimulación Luminosa/métodos , Adulto , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA