Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(1): 5, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666123

RESUMEN

Spinal muscular atrophy (SMA) is caused by deficiency of SMN protein, which is crucial for spliceosome subunits biogenesis. Most SMA patients have SMN1 deletions, leaving SMN2 as sole SMN source; however, a C→T substitution converts an exonic-splicing enhancer (ESE) to a silencer (ESS), causing frequent exon7 skipping in SMN2 pre-mRNA and yielding a truncated protein. Antisense treatment to SMN2 intron7-splicing silencer (ISS) improves SMN expression and motor function. To view this Bench to Bedside, open or download the PDF.


Asunto(s)
Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos/uso terapéutico , Humanos , Empalme del ARN , Proteína 2 para la Supervivencia de la Neurona Motora/genética
2.
Cell ; 150(1): 53-64, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22770214

RESUMEN

U1 snRNP (U1), in addition to its splicing role, protects pre-mRNAs from drastic premature termination by cleavage and polyadenylation (PCPA) at cryptic polyadenylation signals (PASs) in introns. Here, a high-throughput sequencing strategy of differentially expressed transcripts (HIDE-seq) mapped PCPA sites genome wide in divergent organisms. Surprisingly, whereas U1 depletion terminated most nascent gene transcripts within ~1 kb, moderate functional U1 level decreases, insufficient to inhibit splicing, dose-dependently shifted PCPA downstream and elicited mRNA 3' UTR shortening and proximal 3' exon switching characteristic of activated immune and neuronal cells, stem cells, and cancer. Activated neurons' signature mRNA shortening could be recapitulated by U1 decrease and antagonized by U1 overexpression. Importantly, we show that rapid and transient transcriptional upregulation inherent to neuronal activation physiology creates U1 shortage relative to pre-mRNAs. Additional experiments suggest cotranscriptional PCPA counteracted by U1 association with nascent transcripts, a process we term telescripting, ensuring transcriptome integrity and regulating mRNA length.


Asunto(s)
Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Animales , Línea Celular , Drosophila melanogaster , Estudio de Asociación del Genoma Completo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Células 3T3 NIH , Neuronas/metabolismo , Procesamiento de Término de ARN 3' , Empalme del ARN
3.
Mol Cell ; 76(4): 590-599.e4, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31522989

RESUMEN

Full-length transcription in the majority of human genes depends on U1 snRNP (U1) to co-transcriptionally suppress transcription-terminating premature 3' end cleavage and polyadenylation (PCPA) from cryptic polyadenylation signals (PASs) in introns. However, the mechanism of this U1 activity, termed telescripting, is unknown. Here, we captured a complex, comprising U1 and CPA factors (U1-CPAFs), that binds intronic PASs and suppresses PCPA. U1-CPAFs are distinct from U1-spliceosomal complexes; they include CPA's three main subunits, CFIm, CPSF, and CstF; lack essential splicing factors; and associate with transcription elongation and mRNA export complexes. Telescripting requires U1:pre-mRNA base-pairing, which can be disrupted by U1 antisense oligonucleotide (U1 AMO), triggering PCPA. U1 AMO remodels U1-CPAFs, revealing changes, including recruitment of CPA-stimulating factors, that explain U1-CPAFs' switch from repressive to activated states. Our findings outline this U1 telescripting mechanism and demonstrate U1's unique role as central regulator of pre-mRNA processing and transcription.


Asunto(s)
Núcleo Celular/metabolismo , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , División del ARN , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Regiones no Traducidas 3' , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Estimulación del Desdoblamiento/genética , Factor de Estimulación del Desdoblamiento/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos , Poli A/metabolismo , Unión Proteica , Precursores del ARN/genética , ARN Mensajero/genética , Ribonucleoproteína Nuclear Pequeña U1/genética
4.
Cell ; 146(3): 384-95, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816274

RESUMEN

The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5 Å crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Alineación de Secuencia
5.
Cell ; 136(4): 777-93, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19239895

RESUMEN

Cellular functions depend on numerous protein-coding and noncoding RNAs and the RNA-binding proteins associated with them, which form ribonucleoprotein complexes (RNPs). Mutations that disrupt either the RNA or protein components of RNPs or the factors required for their assembly can be deleterious. Alternative splicing provides cells with an exquisite capacity to fine-tune their transcriptome and proteome in response to cues. Splicing depends on a complex code, numerous RNA-binding proteins, and an enormously intricate network of interactions among them, increasing the opportunity for exposure to mutations and misregulation that cause disease. The discovery of disease-causing mutations in RNAs is yielding a wealth of new therapeutic targets, and the growing understanding of RNA biology and chemistry is providing new RNA-based tools for developing therapeutics.


Asunto(s)
Enfermedad/genética , Empalme Alternativo , Mutación , ARN/uso terapéutico , Empalme del ARN , Terapéutica
6.
Cell ; 138(2): 328-39, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19632182

RESUMEN

Here we identify a component of the nuclear RNA cap-binding complex (CBC), Ars2, that is important for miRNA biogenesis and critical for cell proliferation. Unlike other components of the CBC, Ars2 expression is linked to the proliferative state of the cell. Deletion of Ars2 is developmentally lethal, and deletion in adult mice led to bone marrow failure whereas parenchymal organs composed of nonproliferating cells were unaffected. Depletion of Ars2 or CBP80 from proliferating cells impaired miRNA-mediated repression and led to alterations in primary miRNA processing in the nucleus. Ars2 depletion also reduced the levels of several miRNAs, including miR-21, let-7, and miR-155, that are implicated in cellular transformation. These findings provide evidence for a role for Ars2 in RNA interference regulation during cell proliferation.


Asunto(s)
Proliferación Celular , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Proteínas Nucleares/metabolismo , Interferencia de ARN , Animales , Arsénico/toxicidad , Línea Celular , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Ratones , MicroARNs
7.
Cell ; 133(4): 585-600, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485868

RESUMEN

The survival of motor neurons (SMN) protein is essential for the biogenesis of small nuclear RNA (snRNA)-ribonucleoproteins (snRNPs), the major components of the pre-mRNA splicing machinery. Though it is ubiquitously expressed, SMN deficiency causes the motor neuron degenerative disease spinal muscular atrophy (SMA). We show here that SMN deficiency, similar to that which occurs in severe SMA, has unexpected cell type-specific effects on the repertoire of snRNAs and mRNAs. It alters the stoichiometry of snRNAs and causes widespread pre-mRNA splicing defects in numerous transcripts of diverse genes, preferentially those containing a large number of introns, in SMN-deficient mouse tissues. These findings reveal a key role for the SMN complex in RNA metabolism and in splicing regulation and indicate that SMA is a general splicing disease that is not restricted to motor neurons.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Células HeLa , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Especificidad de Órganos , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN
8.
Mol Cell ; 45(1): 87-98, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22244333

RESUMEN

Ars2 is a component of the nuclear cap-binding complex that contributes to microRNA biogenesis and is required for cellular proliferation. Here, we expand on the repertoire of Ars2-dependent microRNAs and determine that Ars2 regulates a number of mRNAs, the largest defined subset of which code for histones. Histone mRNAs are unique among mammalian mRNAs because they are not normally polyadenylated but, rather, are cleaved following a 3' stem loop. A significant reduction in correctly processed histone mRNAs was observed following Ars2 depletion, concurrent with an increase in polyadenylated histone transcripts. Furthermore, Ars2 physically associated with histone mRNAs and the noncoding RNA 7SK. Knockdown of 7SK led to an enhanced ratio of cleaved to polyadenylated histone transcripts, an effect dependent on Ars2. Together, the data demonstrate that Ars2 contributes to histone mRNA 3' end formation and expression and these functional properties of Ars2 are negatively regulated by interaction with 7SK RNA.


Asunto(s)
Histonas/genética , Proteínas Nucleares/fisiología , Procesamiento de Término de ARN 3' , ARN Mensajero/metabolismo , Células HeLa , Humanos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/fisiología , MicroARNs/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Interferencia de ARN , ARN Interferente Pequeño
9.
Mol Cell ; 38(4): 551-62, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20513430

RESUMEN

The SMN complex assembles Sm cores on snRNAs, a key step in the biogenesis of snRNPs, the spliceosome's major components. Here, using SMN complex inhibitors identified by high-throughput screening and a ribo-proteomic strategy on formaldehyde crosslinked RNPs, we dissected this pathway in cells. We show that protein synthesis inhibition impairs the SMN complex, revealing discrete SMN and Gemin subunits and accumulating an snRNA precursor (pre-snRNA)-Gemin5 intermediate. By high-throughput sequencing of this transient intermediate's RNAs, we discovered the previously undetectable precursors of all the snRNAs and identified their Gemin5-binding sites. We demonstrate that pre-snRNA 3' sequences function to enhance snRNP biogenesis. The SMN complex is also inhibited by oxidation, and we show that it stalls an inventory-complete SMN complex containing pre-snRNAs. We propose a stepwise pathway of SMN complex formation and snRNP biogenesis, highlighting Gemin5's function in delivering pre-snRNAs as substrates for Sm core assembly and processing.


Asunto(s)
Precursores de Ácido Nucleico/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/metabolismo , Sitios de Unión , Células Cultivadas , Células HeLa , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
10.
Mol Cell ; 37(5): 668-78, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20227371

RESUMEN

The specific molecular events that characterize the intrinsic apoptosis pathway have been the subject of intense research due to the pathway's fundamental role in development, homeostasis, and cancer. This pathway is defined by the release of cytochrome c from mitochondria into the cytosol and subsequent binding of cytochrome c to the caspase activator Apaf-1. Here, we report that both mitochondrial and cytosolic transfer RNA (tRNA) bind to cytochrome c. This binding prevents cytochrome c interaction with Apaf-1, blocking Apaf-1 oligomerization and caspase activation. tRNA hydrolysis in living cells and cell lysates enhances apoptosis and caspase activation, whereas microinjection of tRNA into living cells blocks apoptosis. These findings suggest that tRNA, in addition to its well-established role in gene expression, may determine cellular responsiveness to apoptotic stimuli.


Asunto(s)
Apoptosis , Inhibidores de Caspasas , Citocromos c/metabolismo , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Animales , Apoptosis/efectos de los fármacos , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Bovinos , Supervivencia Celular , Citosol/enzimología , Doxorrubicina/farmacología , Activación Enzimática , Células HeLa , Humanos , Hidrólisis , Células Jurkat , Microinyecciones , Mitocondrias/enzimología , Unión Proteica , Proteínas Recombinantes/metabolismo , Ribonucleasa Pancreática/metabolismo , Ribonucleasas/metabolismo , Transfección
11.
Genes Dev ; 24(5): 438-42, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20194437

RESUMEN

Spinal muscular atrophy (SMA) is caused by homozygous survival of motor neurons 1 (SMN1) gene deletions, leaving a duplicate gene, SMN2, as the sole source of SMN protein. However, most of the mRNA produced from SMN2 pre-mRNA is exon 7-skipped ( approximately 80%), resulting in a highly unstable and almost undetectable protein (SMNDelta7). We show that this splicing defect creates a potent degradation signal (degron; SMNDelta7-DEG) at SMNDelta7's C-terminal 15 amino acids. The S270A mutation inactivates SMNDelta7-DEG, generating a stable SMNDelta7 that rescues viability of SMN-deleted cells. These findings explain a key aspect of the SMA disease mechanism, and suggest new treatment approaches based on interference with SMNDelta7-DEG activity.


Asunto(s)
Exones/genética , Atrofia Muscular Espinal/patología , Secuencia de Aminoácidos , Línea Celular , Humanos , Datos de Secuencia Molecular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Mutación/genética , Estabilidad Proteica , Alineación de Secuencia , Índice de Severidad de la Enfermedad , Transducción de Señal/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
12.
Nature ; 468(7324): 664-8, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-20881964

RESUMEN

In eukaryotes, U1 small nuclear ribonucleoprotein (snRNP) forms spliceosomes in equal stoichiometry with U2, U4, U5 and U6 snRNPs; however, its abundance in human far exceeds that of the other snRNPs. Here we used antisense morpholino oligonucleotide to U1 snRNA to achieve functional U1 snRNP knockdown in HeLa cells, and identified accumulated unspliced pre-mRNAs by genomic tiling microarrays. In addition to inhibiting splicing, U1 snRNP knockdown caused premature cleavage and polyadenylation in numerous pre-mRNAs at cryptic polyadenylation signals, frequently in introns near (<5 kilobases) the start of the transcript. This did not occur when splicing was inhibited with U2 snRNA antisense morpholino oligonucleotide or the U2-snRNP-inactivating drug spliceostatin A unless U1 antisense morpholino oligonucleotide was also included. We further show that U1 snRNA-pre-mRNA base pairing was required to suppress premature cleavage and polyadenylation from nearby cryptic polyadenylation signals located in introns. These findings reveal a critical splicing-independent function for U1 snRNP in protecting the transcriptome, which we propose explains its overabundance.


Asunto(s)
Poliadenilación , Precursores del ARN/metabolismo , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Emparejamiento Base , Secuencia de Bases , Células HeLa , Humanos , Intrones/genética , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacología , Poliadenilación/efectos de los fármacos , Poliadenilación/genética , Piranos/farmacología , Precursores del ARN/genética , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U1/genética , Compuestos de Espiro/farmacología
13.
Mol Cell ; 31(2): 244-54, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18657506

RESUMEN

The SMN complex is essential for the biogenesis of small nuclear ribonucleoproteins (snRNPs), the major constituents of the spliceosome. Deficiency in functional SMN protein causes spinal muscular atrophy, a common motor neuron degenerative disease of severity commensurate with SMN levels and, correspondingly, snRNP assembly decreases. We developed a high-throughput screen for snRNP assembly modifiers and discovered that reactive oxygen species (ROS) inhibit SMN-complex activity in a dose-dependent manner. ROS-generating compounds, e.g., the environmental toxins menadione and beta-lapachone (in vivo IC(50) = 0.45 muM) also cause intermolecular disulfide crosslinking of SMN. Both the oxidative inactivation and SMN crosslinking can be reversed by reductants. We identified two cysteines that form SMN-SMN disulfide crosslinks, defining specific contact points in oligomeric SMN. Thus, the SMN complex is a redox-sensitive assemblyosome and an ROS target, suggesting that it may play a role in oxidative stress pathophysiology, which is associated with many degenerative diseases.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/química , Cisteína/metabolismo , Disulfuros/metabolismo , Ditiotreitol/farmacología , Células HeLa , Humanos , Datos de Secuencia Molecular , Naftoquinonas/química , Naftoquinonas/farmacología , Proteínas del Tejido Nervioso/química , Oxidación-Reducción/efectos de los fármacos , Proteínas de Unión al ARN/química , Especies Reactivas de Oxígeno/farmacología , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Alineación de Secuencia , Bibliotecas de Moléculas Pequeñas/farmacología
14.
Proc Natl Acad Sci U S A ; 110(48): 19348-53, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24191055

RESUMEN

The motor neuron (MN) degenerative disease, spinal muscular atrophy (SMA) is caused by deficiency of SMN (survival motor neuron), a ubiquitous and indispensable protein essential for biogenesis of snRNPs, key components of pre-mRNA processing. However, SMA's hallmark MN pathology, including neuromuscular junction (NMJ) disruption and sensory-motor circuitry impairment, remains unexplained. Toward this end, we used deep RNA sequencing (RNA-seq) to determine if there are any transcriptome changes in MNs and surrounding spinal cord glial cells (white matter, WM) microdissected from SMN-deficient SMA mouse model at presymptomatic postnatal day 1 (P1), before detectable MN pathology (P4-P5). The RNA-seq results, previously unavailable for SMA at any stage, revealed cell-specific selective mRNA dysregulations (~300 of 11,000 expressed genes in each, MN and WM), many of which are known to impair neurons. Remarkably, these dysregulations include complete skipping of agrin's Z exons, critical for NMJ maintenance, strong up-regulation of synapse pruning-promoting complement factor C1q, and down-regulation of Etv1/ER81, a transcription factor required for establishing sensory-motor circuitry. We propose that dysregulation of such specific MN synaptogenesis genes, compounded by many additional transcriptome abnormalities in MNs and WM, link SMN deficiency to SMA's signature pathology.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteínas del Complejo SMN/deficiencia , Sinapsis/fisiología , Transcriptoma/genética , Animales , Secuencia de Bases , Complemento C1q/genética , Proteínas de Unión al ADN/genética , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Datos de Secuencia Molecular , Neuroglía/metabolismo , ARN Mensajero/metabolismo , Proteínas del Complejo SMN/metabolismo , Análisis de Secuencia de ARN , Sinapsis/genética , Factores de Transcripción/genética
15.
J Nat Prod ; 76(4): 685-93, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23517093

RESUMEN

Mining the genome sequence of Burkholderia thailandensis MSMB43 revealed a cryptic biosynthetic gene cluster resembling that of FR901464 (4), a prototype spliceosome inhibitor produced by Pseudomonas sp. No. 2663. Transcriptional analysis revealed a cultivation condition in which a regulatory gene of the cryptic gene cluster is adequately expressed. Consequently, three new compounds, named thailanstatins A (1), B (2), and C (3), were isolated from the fermentation broth of B. thailandensis MSMB43. Thailanstatins are proposed to be biosynthesized by a hybrid polyketide synthase-nonribosomal peptide synthetase pathway. They differ from 4 by lacking an unstable hydroxyl group and by having an extra carboxyl moiety; those differences endow thailanstatins with a significantly greater stability than 4 as tested in phosphate buffer at pH 7.4. In vitro assays showed that thailanstatins inhibit pre-mRNA splicing as potently as 4, with half-maximal inhibitory concentrations in the single to sub-µM range. Cell culture assays indicated that thailanstatins also possess potent antiproliferative activities in representative human cancer cell lines, with half-maximal growth inhibitory concentrations in the single nM range. This work provides new chemical entities for research and development and new structure-activity information for chemical optimization of related spliceosome inhibitors.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Burkholderia/química , Piranos/aislamiento & purificación , Piranos/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Genómica , Humanos , Familia de Multigenes , Pseudomonas/química , Piranos/química , Precursores del ARN/efectos de los fármacos , Compuestos de Espiro/química , Compuestos de Espiro/aislamiento & purificación , Relación Estructura-Actividad
16.
RNA ; 21(4): 603-4, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25780157
17.
Curr Opin Cell Biol ; 14(3): 305-12, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12067652

RESUMEN

Spinal muscular atrophy is a common, often lethal, neurodegenerative disease that results from low levels of, or loss-of-function mutations in, the SMN (survival of motor neurons) protein. SMN oligomerizes and forms a stable complex with five additional proteins: Gemins 2-6. SMN also interacts with several additional proteins referred to as "substrates". Most of these substrates contain a domain enriched in arginine and glycine residues (the RG-rich domain), and are constituents of different ribonucleoprotein complexes. Recent studies revealed that the substrates can be modified by an arginine methyltransferase complex, the methylosome. This forms symmetrical dimethylarginines within the RG-rich domains of the substrates, thereby converting them to high-affinity binders of the SMN complex, and most likely providing regulation of the ribonucleoprotein assembly processes.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Ribonucleoproteínas/biosíntesis , Secuencia de Aminoácidos , Animales , Núcleo Celular/química , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Citoplasma/química , Humanos , Péptidos y Proteínas de Señalización Intracelular , Sustancias Macromoleculares , Metiltransferasas/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/análisis , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas , Proteínas de Unión al ARN , Proteínas del Complejo SMN
18.
Methods Enzymol ; 655: 325-347, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34183128

RESUMEN

Full-length transcription in the majority of protein-coding and other genes transcribed by RNA polymerase II in complex eukaryotes requires U1 snRNP (U1) to co-transcriptionally suppress transcription-terminating premature 3'-end cleavage and polyadenylation (PCPA) from cryptic polyadenylation signals (PASs). This U1 activity, termed telescripting, requires U1 to base-pair with the nascent RNA and inhibit usage of a downstream PAS. Here we describe experimental methods to determine the mechanism of U1 telescripting, involving mapping of U1 and CPA factors (CPAFs) binding locations in relation to PCPA sites, and identify U1 and CPAFs interactomes. The methods which utilizes rapid reversible protein-RNA and protein-protein chemical crosslinking, immunoprecipitations (XLIPs) of components of interest, and RNA-seq and quantitative proteomic mass spectrometry, captured U1-CPAFs complexes in cells, providing important insights into telescripting mechanism. XLIP profiling can be used for comprehensive molecular definition of diverse RNPs.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1 , Factores de Escisión y Poliadenilación de ARNm , Poliadenilación , Proteómica , ARN , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
19.
Nat Commun ; 11(1): 1, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911652

RESUMEN

Stimulated cells and cancer cells have widespread shortening of mRNA 3'-untranslated regions (3'UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates' most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells' migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3'UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.


Asunto(s)
Movimiento Celular , Neoplasias/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Línea Celular Tumoral , Humanos , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/patología , Neoplasias/fisiopatología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética
20.
Trends Cell Biol ; 14(5): 226-32, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15130578

RESUMEN

Small nuclear ribonucleoproteins (snRNPs) are crucial for pre-mRNA processing to mRNAs. Each snRNP contains a small nuclear RNA (snRNA) and an extremely stable core of seven Sm proteins. The snRNP biogenesis pathway is complex, involving nuclear export of snRNA, Sm-core assembly in the cytoplasm and re-import of the mature snRNP. Although in vitro Sm cores assemble readily on uridine-rich RNAs, the assembly in cells is carried out by the survival of motor neurons (SMN) complex. The SMN complex stringently scrutinizes RNAs for specific features that define them as snRNAs and identifies the RNA-binding Sm proteins. We discuss how this surveillance capacity of the SMN complex might ensure assembly of Sm cores only on the correct RNAs and prevent illicit, potentially deleterious assembly of Sm cores on random RNAs.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Animales , Secuencia de Bases , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Humanos , Datos de Secuencia Molecular , ARN/química , ARN/genética , Proteínas de Unión al ARN , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN , Empalmosomas/química , Empalmosomas/genética , Empalmosomas/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA